Powered by OpenAIRE graph
Found an issue? Give us feedback
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
229 Projects, page 1 of 46
  • Funder: European Commission Project Code: 629677
    more_vert
  • Funder: European Commission Project Code: 101109110
    Funder Contribution: 261,381 EUR

    Mineral carbonation is based on the reaction of CO2 with metal oxide bearing materials to precipitate insoluble carbonates, with calcium being one of the most attractive metals. While the development of industrial carbonation processes has been recommended to mitigate climate change, its natural occurrence in soils and its potential enhancement through management practices has received little attention so far. Since natural carbonation is commonly considered to be a slow process, spreading powder of non-carbonated, calcium-bearing minerals over soils, a strategy known as enhanced rock weathering (ERW), is a promising way to accelerate it. While humid tropical areas are generally regarded as having the greatest potential for ERW, recent evidence suggests that carbonation may also be significant in drylands, driven by water vapour adsorption (WVA) by soil at night, potentially representing an overlooked long-term carbon sink. The general objective of the OASIS project is to assess the potential of ERW in dryland soils. Its main underlying assumption is that optimizing WVA with amendment of highly adsorbent ground rock will maximize the carbonation process while reducing the dependence of phototrophic organisms on rainfall or irrigation. To tackle this objective, OASIS will implement field and mesocosm manipulative experiments using cutting-edge infrastructure to control environmental conditions and simulate climate change. These will be coupled to state-of-the-art measurements and isotopic tracing of soil-atmosphere water vapor and CO2 fluxes. This research will contribute to filling several gaps in our understanding of natural carbonation and its interactions with WVA, organisms, and climate change. It is also expected to provide solid arguments to implement conservation measures and sustainable agricultural practices in drylands or seasonally dry lands to protect and increase water and carbon resources, in line with several European and global guidelines.

    more_vert
  • Funder: European Commission Project Code: 948829
    Overall Budget: 1,536,180 EURFunder Contribution: 1,536,180 EUR

    Turning valuable though outcasted lignocellulosic biomass, such as forestry and agricultural waste, into commodity chemicals by using renewable energies is key to disrupt our ongoing dependence on oil refineries and fossil fuels and to stimulate the growth of a sustainable industry. The lack of effective valorization strategies to mine the valuable chemicals locked into lignin, one of the major components of this biomass, is holding back this transition. Using sunlight to drive this valorization is key to embrace sustainability. In this sense, photocatalysis is the prevalent strategy when targeting the upscaling of solar-driven chemistry. The realization of this concept has been prevented by huge fundamental and technical hurdles, viz. the lack of knowledge on the redox processes involved in the valorization, on specific catalysts and on the optimum systems for light harnessing and utilization. The RELICS will deploy an interdisciplinary approach of materials’ synthesis, interfacial engineering and operando characterization to pioneer new selective catalysts with specific end-products and tailor-made photocatalysts (PCs). Our definitive goal of demonstrating a photocatalytic machinery with programmed selectivity and breakthrough yields of lignin conversion will be enabled through advancing the project’s core objectives: (1) the rational design of electrocatalysts for the selective production of phenolic aldehydes or ketones, guided by (2) a profound understanding of the reaction mechanism and (3) the fabrication of multijunction PCs with intentionally-defined selectivity and enhanced photogenerated carrier utilization. The use of (photo)electrochemical model systems will support project progress by accelerating materials’ optimization and providing a reliable platform for the operando analysis of the reactive interface. All in all, the scientific outcomes of RELICS will positively impact the fields of organic electrosynthesis and solar energy conversion.

    more_vert
  • Funder: European Commission Project Code: 656370
    Overall Budget: 170,122 EURFunder Contribution: 170,122 EUR

    In the last decades, X-ray astronomy provided a wealth of information on the neutron star thermal history, surface temperature distribution, surface magnetic field strength, outburst and flaring activity. It has been recently shown, that many of these different observational properties are deeply influenced by the evolution of the magnetic field and temperature in the neutron star interior. Our understanding of the magnetic field evolution is however still incomplete, as these 2D numerical simulations completely neglect the field evolution in the core. This project will study the magneto-thermal evolution of neutron stars with magnetic fields treading both the core and the crust, incorporating in a consistent way the effects of ambipolar diffusion and superfluidity/superconductivity. This research will explore also models where superconductivity is limited in shells, which are confined in the outer core. They are expected when the core's magnetic field is so strong, above 10^{16} Gauss, to destroy superconductivity. The magneto-thermal evolution will be studied by using 2D numerical simulations, which solve simultaneously the induction equation and the heat transfer equation. The complex magnetic field which results from the magneto-thermal evolution may describe the configuration expected in a flaring magnetar, where quasi-periodic oscillations (QPOs) have been observed. This project will study the QPOs of these complex magnetic field configurations, by using perturbation methods. We will develop a computational framework to determine the properties of seismic vibrations on magnetar's models with any magnetic field topology. The results of this research project and the combined information available from thermal history and magnetar QPOs will be used to determine, by using independent astrophysical observations and dynamical processes, the physical properties of highly magnetized neutron stars as well as to shed light into the equation of state of dense matter.

    more_vert
  • Funder: European Commission Project Code: 101028323
    Overall Budget: 245,732 EURFunder Contribution: 245,732 EUR

    Biocrusts are topsoil microbial communities that live in close association with soil particles and constitute the living skin of drylands. They intercede in numerous key ecosystem processes that are essential to desert ecosystems and play a relevant role in the global carbon cycle. Despite their inherent tolerance to aridity, a growing body of literature suggests that forecasted alterations in precipitation patterns, a global imprint of climate change, has the potential to dramatically affect these communities. However, little is known about how this will alter biocrust microbiome functioning and how these changes will be echoed to the soil properties and carbon budget in global drylands. This lack of knowledge arises from the difficulty to reliably link culture independent traditional genomic data to soil function. Thus, there is an urgent need to implement techniques that allow the identification of active organisms driving soil processes. The main objective of MICROBIOCLIM is to gain a deeper insight into the effect of altered precipitation patterns driven by climate change on biocrust microbiome functioning in drylands. To tackle this objective, MICROBIOCLIM will implement Biorthogonal Non-Canonical Amino Acid Tagging (BONCAT) coupled to omics methods to probe active cells in situ in biocrust while tracking the evolution of the soil carbon budget under climate change scenarios. The research outlined here includes multiple spatial and temporal scales, which will allow us to gain critical knowledge to design strategies to preserve biocrusts and the ecosystem services they render. This project will also help fill a major gap in our understanding of the underlying mechanisms controlling soil respiration and their implications for carbon cycling in global drylands, both priorities of the H2020 and the EU Green Deal.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.