Powered by OpenAIRE graph
Found an issue? Give us feedback

Umeå University

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
245 Projects, page 1 of 49
  • Funder: European Commission Project Code: 101116253
    Overall Budget: 2,048,120 EURFunder Contribution: 2,048,120 EUR

    Harnessing twisted light (light carrying orbital angular momentum) on the nanoscale, and its interaction with magnetism, can revolutionize how we encode and process information. In fact, twisted electromagnetic fields can enable a superior control over the motion of the electrons and their spin compared to circularly polarized light. Yet, a clear demonstration that it is possible to act on magnetism using twisted light has still to be established. The main challenge is to find an approach to generate nanoscale electromagnetic fields carrying orbital angular momentum, which can be exploited to drive magnetism with extreme (few nanometers) spatial resolution, at the intrinsic time scale (few tens of femtoseconds) of the fundamental magnetic interactions (exchange and spin-orbit coupling) responsible for the magnetic order in matter. This feature is essential for the development of ultrafast opto-magnetic applications in spintronics, where a major goal is the coherent control of nanoscale magnetic bits. In MagneticTWIST I tackle this challenge and propose the way towards nanoscale control of ultrafast magnetic phenomena by exploiting twisted plasmons, that is plasmon polaritons (light-induced coherent collective oscillations of free electrons in metals) carrying orbital angular momentum and driven by femtosecond light pulses. This strategy will enable a coherent transfer of orbital angular momentum to the electronic spin and orbital degrees of freedom at the nanoscale. In this way, I will disclose new types of light-matter interactions and new kinds of opto-magnetic effects, with a ground-breaking impact on ultrafast magnetism, spintronics and light-driven electronics. Beyond this, MagneticTWIST will open a radically new path enabling to store and process an infinite amount of information on different spatiotemporal levels, impacting also other research fields such as cryptography, artificial intelligence, and quantum technology.

    more_vert
  • Funder: European Commission Project Code: 802631
    Overall Budget: 1,477,560 EURFunder Contribution: 1,477,560 EUR

    Previous research has investigated the relationship between unemployment and health from a perspective of an isolated individual. HEALFAM takes a novel approach and examines how transition to unemployment triggers diffusion of ill mental and physical health within families. It investigates how becoming unemployed affects health outcomes of partners, children and elderly parents of the unemployed and whether the magnitudes of these influences differ across families and societies. Thus, instead of viewing the unemployed as functioning in isolation, HEALFAM assesses the consequences of unemployment for family members taking a multi-actor perspective and international comparative approach. Guided by the life course theoretical framework, which views health and well-being as a process rather than a state and calls for considering interrelatedness of individuals, HEALFAM employs longitudinal data that provide information about multiple members of families. In order to analyse these datasets, HEALFAM uses longitudinal dyadic data analysis techniques as well as multilevel models for longitudinal data. HEALFAM aims to open a new frontline of research on health and wellbeing from a life course perspective. It benefits from my knowledge on three interrelated social phenomena: (1) the role of labour market career and experiences of unemployment (2) family structure and intra-family resources (3) social antecedents of health and wellbeing among family members. It draws on high quality register and panel survey data as well as the expertise at the interdisciplinary research centres that I am connected to at Umeå University. Through international collaborations, it brings together experts in multiple disciplines carrying out research taking a life course perspective.

    more_vert
  • Funder: European Commission Project Code: 101150699
    Funder Contribution: 222,728 EUR

    Sustainable, recyclable, and low-cost light-emitting technologies are projected to revolutionize the lighting market by introducing new applications in disease treatment, packaging, architecture, and fashion. The light-emitting electrochemical cell (LEC) may become such a disruptive lighting technology. It can be fabricated from biodegradable materials using cost-efficient printing or coating and offers soft areal emission from flexible and thin luminaires. In contrast to established (organic) LEDs, an LEC comprises only one active layer in which an organic semiconductor is blended with an electrolyte. Under operating voltage, the mobile ions redistribute and form self-organized charge-injection and transport regions. While being a promising concept for versatile, next-generation lighting, LECs currently suffer from inadequate operating lifetime and efficiency. Recent data suggest that the same ion redistribution that enables single-layer functionality also induces severe exciton-polaron quenching. This causes a reduction in light emission by about a factor of two and fast material degradation. Building on this new insight, I want to combine the expertise of OPEG, a leading group in LEC research, with my knowledge in optoelectronic characterization and modeling to develop a better understanding and control of the ion redistribution process in LECs. The associated suppression of ion-induced exciton-polaron quenching has the potential to enhance the LEC efficiency and lifetime towards industrial relevance, rendering it a promising next-generation light source.

    more_vert
  • Funder: European Commission Project Code: 101202752
    Funder Contribution: 236,340 EUR

    Gram-positive (G+) bacteria, such as the Enterococcus species faecium and faecalis, cause around half of hospital-acquired infections. These infections are increasingly antimicrobial-resistant (AMR), which presents a major challenge for tackling the global burden of disease. AMR arises from mutant genes, which can be inherited, and also spread between bacterial species by conjugation through type 4 secretion systems (T4SS), which are protein complex. T4SS are an attractive target for new antibioitics, but development has proven difficult without detailed structural information on these molecular machines. Information is especially lacking for G+ species, which we will address. This project will use cryogenic electron microscopy and tomography to study the T4SS of E. faecalis and obtain the first high-resolution and in situ structures of any G+ T4SS, combining my experience with the cryo-EM of membrane protein complexes and the host’s expertise in G+ T4SS. We will reveal the molecular architecture of a critical conjugation machine and its network of protein-protein interactions. This will enable the precise mechanism of gene transfer and essential (targetable) proteins to be determined.

    more_vert
  • Funder: European Commission Project Code: 101150595
    Funder Contribution: 206,888 EUR

    Filoviruses are amongst the most dangerous human pathogens. They pose a great health concern, due to a growing number of emerging species, that vary in tropism and pathogenicity. In my work, I aim at establishing a correlation between filoviruses pathogenicity, the characteristics of their interaction with the cell membrane and their entry and egress potential. In this context, I hypothesize that viral carbohydrates are key in modulating these processes. For this study, I have selected a number of filovirus species, distinct in their pathogenicity for humans. I will use a transcription and replication competent virus like particle system (trVLP) as a BSL-2 virus model, and will produce particles presenting the glycoproteins (GP) from the different filovirus species of interest. GP is the sole glycoprotein found on the virus surface and is crucial for filovirus attachment and entry. Using an interdisciplinary approach combining virology, biophysics and glycobiology, I will first carry out infection assays, to characterize the entry and egress potential of the different particles. I will further investigate the role of two key attachment molecules, heparan sulfate and DC-SIGN in modulating those processes. This will be achieved first on the cellular level, and then on the molecular level, using single molecule force spectroscopy to look at the characteristics of individual ligand-receptor bonds. Extensive glycomic analysis, amongst other via mass spectrometry, will further address the hypothesis that the GPs glycan profile plays a key role in determining the behaviour of the different filoviruses. Taken together, I will provide a comprehensive description of the influence of the different GPs in viral entry and egress, on the molecular, functional, and biological levels. Such insights will without doubt be key to the development of efficient and broad-spectrum antivirals.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.