
Chalmers University of Technology
ISNI: 0000000107756028
FundRef: 501100002835 , 501100006552
Chalmers University of Technology
Funder
732 Projects, page 1 of 147
assignment_turned_in Project2012 - 2017Partners:Chalmers University of TechnologyChalmers University of TechnologyFunder: European Commission Project Code: 308130All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::c27e31f5fe660cba8c496cb07aa23368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::c27e31f5fe660cba8c496cb07aa23368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2021Partners:Chalmers University of TechnologyChalmers University of TechnologyFunder: European Commission Project Code: 790744Overall Budget: 173,857 EURFunder Contribution: 173,857 EURGiven their high conversion efficiency and zero-emission characteristics, hydrogen fuel cells are extremely attractive for replacing current energy conversion and power generation technologies. Nevertheless, they still need significant technological improvements in order to increase their competitiveness in the mobility and energy conversion market. More to the point, nowadays, the increase of the effective gas-liquid mass transport in the porous electrodes is highly demanded to improve cell performances. The present proposal aims to investigate and improve the transport properties of two phase flows in hydrogen fuel cells porous materials with an innovative bottom-up approach: tailoring the porous microstructure in order to achieve the desired macroscopic feature, i.e. enhancing liquid water removal and promoting gas transport. The pore geometrical microscopic features (size, form, anisotropic structure) and the chemical behaviour of the pores surface (hydro -philic-phobic features) will be tuned and their effect on water imbibition, drainage and spatial and temporal distribution will be investigated by means of numerical simulations. An advancement in fuel cells technology is expected by characterising the optimal design of the porous electrodes which will significantly increase cells performances and open up a route for a new generation of fuel cells.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7bb4d505d20120f6c54511f05c9f76d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7bb4d505d20120f6c54511f05c9f76d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2025 - 2027Partners:Chalmers University of TechnologyChalmers University of TechnologyFunder: European Commission Project Code: 101210349Funder Contribution: 252,180 EURIntegrated localization and communications (ILAC) is a key feature of the future sixth-generation (6G) network. Benefiting from wide coverage and flexible deployment, operating ILAC in low-earth-orbit (LEO) satellite systems is a promising way to provide ubiquitously flexible localization and high-capacity communication. Particularly, in terms of localization, LEO satellite systems can break through limitations of global navigation satellite systems (GNSS) and provide superior signal quality for ILAC service. Although the LEO satellite systems are crucial for future 6G networks, they also bring challenges. First, the current signal waveforms for LEO satellite systems are primarily optimized for communication purposes, which may fail to meet the requirements of ILAC in the 6G networks. Second, the high mobility of LEO satellites leads to time-varying channels and significant Doppler shifts in satellite-ground links. Conventional positioning methods, generally tailored for terrestrial signal waveforms and assuming linear time-invariant channels, will be suboptimal in this new scenario. To address these challenges, this research aims to develop novel integrated localization and communication methods tailored for 6G LEO satellite systems with time-varying channels. To this end, three work packages (WPs) are conducted. WP1 is to design advance signal waveforms for integrated localization and communication in 6G LEO satellite systems and conduct a performance analysis considering the time-varying channel. WP2 is to develop advanced LEO satellite-based localization and tracking algorithms for moving targets. WP3 is to develop adaptive resource allocation and satellite handover algorithms for ILAC with multiple LEO satellites. This project aims to develop innovative integrated localization and communications techniques for 6G LEO satellite systems, facilitating precise positioning and high-data-rate communications for moving targets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::5340aec913b8a52271bfa839f3752175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::5340aec913b8a52271bfa839f3752175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2023Partners:Chalmers University of TechnologyChalmers University of TechnologyFunder: European Commission Project Code: 101064463Funder Contribution: 150,000 EURFrequency combs are remarkable photonic devices for precision frequency synthesis and metrology. The core technology behind conventional frequency combs is a mode-locked laser. Today, so-called microcombs constitute an alternative for the generation of a frequency comb on a chip-scale microresonator. Microcombs have a frequency separation between lines that is orders of magnitude larger than standard mode-locked lasers. The combination of small footprint and large line spacing is opening up entirely new scientific and technological opportunities, one of the most prominent ones being optical communications. However, one outstanding problem with microcombs is their fundamentally limited power conversion efficiency, which hampers the potential applications of this otherwise promising technology. In my ERC CoG DarkComb, we have overcome this issue by developing an innovative arrangement of linearly coupled microresonators implemented with an original silicon nitride fabrication process that features ultra-low optical losses. The aim of this ERC PoC is to conduct a yield analysis of our technology, investigate the freedom to operate and pursue a rigorous market evaluation. These results will form the basis for the development of a sound business strategy upon the conclusion of the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b37dd4b7acc81ecd22029a146ff29f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b37dd4b7acc81ecd22029a146ff29f65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2020Partners:Chalmers University of TechnologyChalmers University of TechnologyFunder: European Commission Project Code: 637624Overall Budget: 1,500,000 EURFunder Contribution: 1,500,000 EURImagine a world, in which countless embedded microelectronic components continuously monitor our health and allow us to seamlessly interact with our digital environment. One particularly promising platform for the realisation of this concept is based on wearable electronic textiles. In order for this technology to become truly pervasive, a myriad of devices will have to operate autonomously over an extended period of time without the need for additional maintenance, repair or battery replacement. The goal of this research programme is to realise textile-based thermoelectric generators that without additional cost can power built-in electronics by harvesting one of the most ubiquitous energy sources available to us: our body heat. Current thermoelectric technologies rely on toxic inorganic materials that are both expensive to produce and fragile by design, which renders them unsuitable especially for wearable applications. Instead, in this programme we will use polymer semiconductors and nanocomposites. Initially, we will focus on the preparation of materials with a thermoelectric performance significantly beyond the state-of-the-art. Then, we will exploit the ease of shaping polymers into light-weight and flexible articles such as fibres, yarns and fabrics. We will explore both, traditional weaving methods as well as emerging 3D-printing techniques, in order to realise low-cost thermoelectric textiles. Finally, within the scope of this programme we will demonstrate the ability of prototype thermoelectric textiles to harvest a small fraction of the wearer’s body heat under realistic conditions. We will achieve this through integration into clothing to power off-the-shelf sensors for health care and security applications. Eventually, it can be anticipated that the here interrogated thermoelectric design paradigms will be of significant benefit to the European textile and health care sector as well as society in general.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3947a1ab5b21a7a2ab5b8bd07c7cfaad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3947a1ab5b21a7a2ab5b8bd07c7cfaad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right