
DTU
Funder
1,317 Projects, page 1 of 264
Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2028Partners:DTUDTUFunder: European Commission Project Code: 101098064Overall Budget: 2,494,160 EURFunder Contribution: 2,494,160 EURANAEROB aims to generate a platform that enables linking of microbial ecology to biotechnology. This platform should be general and applicable to a very wide range of conditions and applications. Anaerobic processes are performed by a well-structured microbial community and have a great potential for upcycling organic wastes and industrial/agricultural residual resources to achieve circular bioeconomy. Upcycling of residual resources through production of materials, biochemicals and energy is a promising way towards a more sustainable production. Pure culture fermentations are not appropriate when wastes are the substrate and therefore mixed culture microbial consortia are required. Currently inocula for biological processes utilizing wastes as substrates are random self-established cultures. Comprehensive knowledge about the microbial interactions of the anaerobic microbiome is needed for valorization and remediation of biowastes. The overall aim of ANAEROB is to understand how to create “designer microbial consortia” for specific bioengineering processes based on genetic information of anaerobic microorganisms. The aim will be achieved by: 1. Elucidating the syntrophic mutualistic symbioses of the anaerobic microbiome, and clarifying the role of specific compounds exchanged by microbes; 2. Developing models for prediction of desired pathways; 3. Developing methods for isolation of new unculturable anaerobes; 4. Developing a novel method for designing and establishing microbial “cocktails” for specific functions and 5. Validating the concept of creating specific anaerobic consortia for upcycling gas streams of carbon-intensive industries. ANAEROB takes a multidisciplinary approach to use both engineering and microbiology to reach at the next level of understanding for exploitation of the anaerobic microbial “treasure”. The project’s successful completion will have major benefits in industrial sectors and environmental applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b27ef1aedfd631fa06998d18be25d8d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b27ef1aedfd631fa06998d18be25d8d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2026 - 2028Partners:DTUDTUFunder: European Commission Project Code: 101199762Funder Contribution: 263,393 EURData centres running artificial intelligence AI and machine-learning workloads significantly impact climate change due to their massive electricity consumption. The urgent need for sustainable solutions has highlighted the potential of emerging ferroelectric random-access memories (FRAMs), particularly HfO2-based FRAMs. These devices offer low power consumption and fast switching speeds, making them ideal for energy-efficient data storage technologies. However, achieving stable and uniform ferroelectric properties in HfO2-based thin films requires the precise engineering of strain and defects under specific conditions. Overcoming these technical challenges is crucial for the widespread adoption of the FRAM technology to help mitigating the environmental impacts of data centres. I aim to tackle these challenges by proposing metal-ion-based magnetron sputtering strategies. HiPIMS-Fmemories will enable the growth of HfZrO2 thin films (as a model HfO2-based material system) with specific polar phases and nanocolumnar structures, essential for achieving uniform, enhanced ferroelectricity. HiPIMS-Fmemories will deliver: (1) fabrication of high-quality thin films using high-power impulse magnetron sputtering (HiPIMS) and the effects of metal-ion irradiation on metastable domains and material properties, (2) rapid, energy-efficient ferroelectric switching by optimising key metal-ion parameters, (3) enhanced understanding of the relationship between polarisation responses and resistive switching arising from ionic-conduction effects, and (4) device fabrication and testing. These fabrication solutions can also be applicable for other ferroelectric thin-film materials. Overall, this research aims to represent a significant advancement in developing sustainable and efficient FRAM technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::92d8c53ce965d2e4ba5d8ab2ccb60aeb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::92d8c53ce965d2e4ba5d8ab2ccb60aeb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2025Partners:DTUDTUFunder: European Commission Project Code: 101028381Overall Budget: 328,968 EURFunder Contribution: 328,968 EURHydrogen is an alternative future energy carrier. However, the drawback associated with its compact storage is still a scientific and technological challenge. Metal hydrides offer a suitable combination weighing both safety and cost. In particular, magnesium hydride (MgH2) is an ideal candidate with a high gravimetric capacity of 7.6 wt %, low cost, and abundance in nature. However, the high stability of Mg-H is a significant limitation for practical application. Although, recently, interface and strain induced-modification is proposed as a strategy to reduce the MgH2 stability in Mg nanoalloys. Nonetheless, they are not well understood in Mg nanoalloys. Moreover, understanding and interpreting these effects on a single nanoparticle (NP) from bulk measurement techniques is a significant problem. Since the effect of averaging and low spatial resolution plagues the collected data, it prevents in resolving the intrinsic impact of size, strain, and interface on a structure-property relationship of single NPs. Therefore, we propose (i) to use STEM-EELS with insitu gas holder(H2) at operando conditions in an aberration-corrected microscope to unravel the metal-hydride phase transition of individual Mg nanoalloys. (ii) apply state of the art iDPC and 4D-STEM to resolve the role of the interface and precise measurement of strain to identify the effect of destabilization on individual Mg nanoalloys. Moreover, advanced training on insitu TEM at DTU, iDPC, and 4D-STEM techniques @secondment and other transferable skills will diversify my competence further and positively impact my future career prospects and networking across Europe. The infrastructure/expertise at DTU, my experience, and knowledge in NP synthesis and hydrogen storage, along with the DTU support office, will ensure the successful implementation of the proposal. Finally, disseminating research and communication to the stakeholders and the general public will ensure the maximum impact of the project's results.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a1514b72c95feb7bfa976a464a09dddf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a1514b72c95feb7bfa976a464a09dddf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2020 - 2027Partners:DTUDTUFunder: European Commission Project Code: 865230Overall Budget: 2,119,640 EURFunder Contribution: 2,119,640 EURWithin optical quantum information processing, the quantum bits are encoded on single photons and their quantum mechanical properties are exploited to build new functionality. A prime example is the quantum computer, which can be built simply from single-photon sources and detectors, and simple optical components. However for scalable optical quantum computing involving hundreds of photons, the performance requirements for the single-photon source are daunting: the source must feature near-unity efficiency and near-unity indistinguishability simultaneously! Today, all known source designs suffer from inherent trade-offs between efficiency and indistinguishability and their performance is insufficient for scalable quantum computing. The project objective is to realize a source of single indistinguishable photons with performance of ground-breaking nature. The break-through lies in the simultaneous realization of near-unity efficiency and indistinguishability, a combination which overcomes the limitations of present state-of-the-art and ventures far into the regime of scalable quantum computing. As an expert in single-photon source engineering I find myself in a unique position to address this challenge. Since it is unknown how to design such a source, I will first establish a new understanding of the physics of the near-unity regime, where phonon-induced decoherence represents a main limitation for the indistinguishability. I will then advance state-of-the-art in optical engineering by proposing a novel design, where all physical parameters can be controlled independently. The modelling of the near-unity performance source is extremely demanding, and the analysis requires additional advances within optical simulations and open quantum systems theory. Once this is achieved, I will fabricate a prototype and test it in a multi-photon interference boson sampling experiment to unambiguously prove that scalable optical quantum information processing is indeed within reach.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1f466f9d461b24d7855d14bf98d7647d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1f466f9d461b24d7855d14bf98d7647d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2017Partners:DTUDTUFunder: European Commission Project Code: 654818Overall Budget: 200,195 EURFunder Contribution: 200,195 EURFunctional foods containing omega-3 lipids, which have approved health claims by EFSA, have resulted in one of the fastest-growing food product categories in Europe. However, to successfully develop foods enriched with omega-3 PUFA, lipid oxidation of these highly unsaturated fatty acids must be prevented in order to avoid both the loss of nutritional value and the formation of unpleasant off-flavors. Omega-3 PUFA can be added to foods as neat oils or as a “delivery system” such as microencapsulated oil powders and oil-in-water emulsions. Nevertheless, delivery of omega-3 lipids in the form of emulsions reduces the oxidative stability of omega-3 PUFA in some products. Furthermore, microencapsulates are less suitable for liquid or semi-liquid foods than emulsified omega-3 oils due to handling/mixing issues. Therefore, the development of alternative omega-3 PUFA delivery systems, which are easy to disperse and which will lead to improved oxidative stability of omega-3 enriched food products, is urgently required. One of the more promising delivery systems can be functional nano-microstructures obtained by electrospinning technology, which is possible to up-scale. In light of the above, the aim of this research project is to develop advanced omega-3 delivery systems such as electrospun nano-microstructures. To this end, the specific objectives are: 1) Development of physically and oxidatively stable nano-microstructures with omega-3 PUFA and natural antioxidants using electrospinning processing. 2) Production of food enriched with the nano-microstructures having appropriate structural-functional properties and being oxidatively stable. The success of the research proposed will lead to an important advance in the protection of omega-3 PUFA against oxidation when incorporated into food. Thus, the knowledge generated by this study has the potential to being exploited by companies devoted to the production of functional foods containing omega-3 lipids.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6e3cc9a0faba28f8902d83d415a4ba4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6e3cc9a0faba28f8902d83d415a4ba4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right