
KUL
FundRef: 501100004040 , 501100004497
RRID: RRID:nlx_149306 , RRID:SCR_001099
ISNI: 0000000106687884
Wikidata: Q833670
FundRef: 501100004040 , 501100004497
RRID: RRID:nlx_149306 , RRID:SCR_001099
ISNI: 0000000106687884
Wikidata: Q833670
Funder
1,846 Projects, page 1 of 370
Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2027Partners:KULKULFunder: European Commission Project Code: 101054917Overall Budget: 2,498,540 EURFunder Contribution: 2,498,540 EUREnsuring the quality of our soils is essential for a sustainable world. Testing the soil quality traditionally occurs by soil sampling, sieving and extraction, thereby disturbing the soil’s hierarchical pore size structure. Soil sieving and extraction disrupts the macro-aggregates and overestimates the accessible reactive surfaces of soil. Plant roots are exposed to only a fraction of these soil reactive surfaces, hence traditional soil tests for bioavailability underscore the physical non-equilibrium of nutrients and contaminants in soil. EXPOSOIL aims to identify the reactive pore space to which roots are exposed in undisturbed soil. The research objectives are to quantify the effects of soil structure and mobile colloids on bioavailability of nutrients and contaminants and to develop methods to understand and diagnose these effects. We speculate that these effects create local heterogeneities that are most important in soils with stronger aggregate structure, for contaminants or nutrients that are relatively immobile and less aged in soil and for elements strongly associated to mobile colloids. Experimental studies will be set up to test these hypotheses in soils with surface amended trace metal contaminants, fertilisers or lime, using isotopes to trace local provenances and using novel visualisation tools. Novel reactive membranes acting as zero sinks for solutes and colloids will be developed to mimic plant roots and to make 2D images of the locally available elements. That development is of high risk but high gain because no other method has yet assayed diffusive fluxes of solutes, let alone of colloids, in unsaturated and undisturbed soils. The new method will disclose the enigmatic roles of soil physical factors and colloids on bioavailability. This knowledge will advance the practical use of soil chemistry in environmental applications, e.g. to improve existing soil testing assays and to facilitate the development of novel, more efficient fertilisers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::99b480cbe873dcb3aaabac15a80944ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::99b480cbe873dcb3aaabac15a80944ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2017Partners:KULKULFunder: European Commission Project Code: 290923All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6b8772daf8c60f9aa2a237d426efdc08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6b8772daf8c60f9aa2a237d426efdc08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:KULKULFunder: National Institutes of Health Project Code: 5U01MH101722-04Funder Contribution: 276,309 USDAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nih_________::8ec598bfc2adbfb34940c6cf340b381f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nih_________::8ec598bfc2adbfb34940c6cf340b381f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2021 - 2026Partners:KULKULFunder: European Commission Project Code: 101001024Overall Budget: 1,994,500 EURFunder Contribution: 1,994,500 EURSmall-scale flow reactors for electro- and photochemistry support the shift in chemical manufacture towards green and sustainable processes based on renewable energy sources. However, the industrial application of these small-scale flow reactors is significantly limited by their currently achieved throughput and productivity. The MICRODISCO project aims to overcome these productivity limitations by exploiting the synergistic effect of ultrasound on intensified electro- and photochemical reactors. Specifically, we will gain a fundamental understanding of the underlying ultrasound physics and their interplay with reactor geometry, material and fluid properties, based on beyond state-of-the-art modeling and experiments (Objective 1). Subsequently, we will exploit this fundamental understanding to controllably excite ultrasound resonance modes to overcome species and electron/photon transport limitations in rationally designed intensified reactors. We will eliminate the diffusion limitation of electrochemical reactors for high-throughput self-supported organic synthesis by inducing active mixing via ultrasound resonance (Objective 2). Furthermore, we will increase light utilization and mass transfer in two-phase photochemical reactors by inducing the gas-liquid atomization phenomenon (i.e. to nebulize liquid droplets from the liquid slug into the illuminated gas bubble) via ultrasound resonance (Objective 3). The MICRODISCO project will provide fundamental understanding of ultrasound resonance modes and a theoretical tool for their prediction, leading to innovative and intensified electro- and photochemical reactors promoting green and sustainable chemistry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9c94137f9b7252cc610121a96e8d6154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9c94137f9b7252cc610121a96e8d6154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2024Partners:KULKULFunder: European Commission Project Code: 101023128Overall Budget: 166,320 EURFunder Contribution: 166,320 EURCarbon fibre-reinforced polymer composites (CFRPs) constitute a highly profitable market in EU’s economy. Their high stiffness and strength and low density allow engineers to design lightweight structures with a lower carbon footprint than conventional metallic ones. Nonetheless, CFRPs hold two main drawbacks which hinder their exploitation in industry: 1) poor damage and impact tolerance; and 2) limited design space due to the lack of robust design tools and the limited capability of past manufacturing technologies. This 2-year fellowship tackles these drawbacks by developing novel bio-inspired, tailorable and healable multi-impact resistant CFRTP (BIOTHECT) structures. BIOTHECT uses helicoidal layups to minimise fibre breakage during impact and a thermoplastic matrix to enable healing. BIOTHECT structures address current industrial needs for lower maintenance costs, sustainability and weight savings. A novel numerical tool will be developed to understand and design BIOTHECT structures with unique performances. Optimal BIOTHECT structures will be manufactured, tested and analysed through detailed damage analyses to develop the design tool to unprecedented accuracy. The fine-tuned design tool will be translated to industry-friendly packages for direct exploitation. Finally, in the context of the digital industry, the project explores the use of automated manufacturing technologies, 3D printing, to tailor BIOTHECT designs locally in larger conventional structures. This novel design aims at creating macro-components with locally improved damage tolerance without a weight increase, hence leading to lower manufacturing waste and lighter structures. The fellowship will take place at KU Leuven with a 4-month secondment at the Thermoplastic Composites Research Center (NL). Training plan, technical work packages, exploitation, dissemination and communication activities will work together to lead the ER to cover a leading role in his own research group in or out of academia.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9017a03cf56d1e8bbaf4d7f0b785cb58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9017a03cf56d1e8bbaf4d7f0b785cb58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right