
JNCC
16 Projects, page 1 of 4
assignment_turned_in Project2015 - 2019Partners:Joint Nature Conservation Committee, Plymouth University, JNCCJoint Nature Conservation Committee,Plymouth University,JNCCFunder: UK Research and Innovation Project Code: NE/K011855/1Funder Contribution: 450,475 GBPSpecies populations are connected to each other through both movement of adults (migration) and eggs, larvae and juveniles (dispersal). If populations become isolated from one another (i.e. are no longer connected), then through genetic mutation, drift and natural selection, they may become so different that they evolve into new biological species. Understanding how populations become isolated is critical to understanding the process of speciation. In the marine environment many species do not move as adults (e.g. corals) or move very slowly (sea urchins). This means that for different adult populations to remain connected they rely on dispersal of early life history stages. Most marine species have a larval stage that lives in the plankton for a period of time, moving with the currents, before settling in a new area. It is larval dispersal that keeps distant populations connected. So understanding patterns of larval dispersal is important to understanding connectivity. In the deep-sea (>200m) the bathyal region of the continental slope has been identified as supporting high species richness and being an area where the rate of origination of new species may also be high. The reasons for this are not clear, but given the importance of connectivity to population isolation and speciation, it follows that the key to understanding patterns of species diversity in this region lies in understanding connectivity. New research has suggested that because the speed of the currents that carry larvae decreases as you go deeper, larvae might not be able to travel as far, leading to a greater tendency for populations at bathyal depths to become isolated over a given distance, and thus increasing the chances of speciation. This study aims to test this theory by investigating how patterns of connectivity vary with depth. This will be done in 3 ways: 1) using genetic analysis (similar to DNA fingerprinting) to compare how related distant populations are and if they become less closely related as you go deeper, 2) using a model of ocean currents to simulate the movement of larvae between sites, and 3) to look at the range and abundance of species present at distant locations to see if those at shallower depths are more similar to each-other than those at bathyal depths. This research has important implications for the sustainable management of the marine environment. Humans increasingly rely on the marine environment to supply us with food, building materials, fuel, and to soak up carbon slowing the progress of human induced climate change. However, our increasing use of this environment is starting to affect is 'normal' functioning, affecting the processes that allow it to provide us with food, fuel, etc. To try to help protect and sustain these 'ecosystem functions', Governments all over the world are setting up networks of Marine Protected Areas (MPAs) to ensure against serious ecosystem disturbance and cascade effects resulting from overexploitation that ultimately impair ecosystem function. There are many questions to be answered when trying to set up an MPA network, but one important question is where to put them to make sure that the populations that live within them are not isolated from each other but are connected. This research will help answer this question in the deep sea, and thus help managers, governments and society ensure the long term health of the ocean.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a030f2997d70b7ffc735a161c7d09997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a030f2997d70b7ffc735a161c7d09997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Scottish Natural Heritage, University of Cambridge, SNH, BTO, University of Cambridge +4 partnersScottish Natural Heritage,University of Cambridge,SNH,BTO,University of Cambridge,British Trust for Ornithology,JNCC,Joint Nature Conservation Committee,UNIVERSITY OF CAMBRIDGEFunder: UK Research and Innovation Project Code: NE/F008627/1Funder Contribution: 212,851 GBPConsiderable effort and money has been devoted to determining the ecological consequences of a wide range of interventions, which has resulted in an extensive literature. However, research shows that practitioners only rarely use this literature when making decisions as to which intervention to implement. Furthermore, many accepted beliefs in conservation practice are actually incorrect. Scientific results are traditionally published in academic journals. However, it is often difficult for practitioners to extract the pertinent information from these. The major problems are that most practitioners do not have access to the Web of Science or equivalent scientific search engines, it is often difficult to target the search for conservation interventions without producing vast numbers of irrelevent titles and many practitioners do not have the training to extract the conservation message from academic papers. Evidence-based medicine has revolutionised medical practice in that the collection, review, and dissemination of the evidence now underpins most medical practice. We suggest that conservation would benefit from a similar revolution and propose that evidence-based conservation should become a standard approach. In this model we envisage practitioners having easy access to summaries of the literature, that they would monitor the effectiveness of some interventions for which the evidence is weak or ambiguous, that there would be reviews and meta analyses where there are numerous studies relating to one issue, and there would be synopses summarising the evidence for the major interventions. This proposal seeks to provide an open access database of the majority of the papers relating to the consequences for birds of conservation interventions. Syntheses of the consequences of a wide range of interventions will be a key output. Full use of the output will also require a change in approaches to conservation. The involvement of all the major organisations involved in bird conservation (BirdLife International - a partnership of over 100 national global bird conservation organisations, British Trust for Ornithology, Joint Nature Conservation Committee, Natural England, Royal Society for the Protection of Birds, Scottish Natural Heritage and World Conservation Monitoring Centre) will both ensure that the project is as required by practitioners but will also ensure that the results will be widely used both in the UK and internationally. Training in the use of evidence-based conservation will be provided through workshops in the UK, Africa and Asia and this work will also be promoted through stands at UK and international meetings. The longer term objective is to change global conservation practice so that the decisions effecting biodiversity are routinely based upon the scientific literature. The expectation is that we can build upon the work and experience of this project to expand it to incorporate all the major aspect of conservation in collaboration with a wide range of other organisation so that the use of evidence in decision making becomes standard practice This proposal would allow us to make a substantial step forward in achieving our objective of reforming global conservation practice.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d9f217db4bc851a4853ca6b9c6442bc3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d9f217db4bc851a4853ca6b9c6442bc3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2024Partners:European Marine Energy Centre, Joint Nature Conservation Committee, Heriot-Watt University, MSS, European Marine Energy Centre +5 partnersEuropean Marine Energy Centre,Joint Nature Conservation Committee,Heriot-Watt University,MSS,European Marine Energy Centre,Marine Scotland,Heriot-Watt University,International Maritime Organization,International Maritime Organisation,JNCCFunder: UK Research and Innovation Project Code: NE/T010886/1Funder Contribution: 565,299 GBPA global demand for energy in parallel with concerns about global warming and energy security are motivating many nations to look for novel and sustainable sources of energy. At the same time the Oil ad Gas Industry is looking to decommission significant infrastructure as it comes to the end of its life cycle. There is a clear transition underway which brings challenges of infrastructure management. Among the issues raised by the offshore industries are those arising from the biological colonization of their structures. This project is aimed at describing the connectivity between structures and understanding the consequences for other sectors when structures are removed or added to the network in the norther North Sea. The project has been designed with several sectoral, governmental and industrial partners and there will be a strong emphasis on converting the scientific results into action at sea. The importance of colonization arises both from the need to make the developments efficient (to produce a reliable source of energy cost effectively) and to ensure the developments are environmentally acceptable. "Environmentally acceptable" covers a multitude of points, ranging from maintaining healthy sea life to avoiding conflicting with other sea users, including fishers who may have a prior claim on the development sites. The research in this project will be diverse to cover the many factors. A keystone of the project will be deployments of a Standard Monitoring System designed to facilitate data collection using practical and effective methods. That system centres on settling plates that will be progressively colonized by biofouling marine invertebrates. These organisms can impede the performance of the energy capturing devices, but can also be a foundation of thriving sea life. Structures including suitable niches can provide living space for larger organisms such as crabs and lobsters, adding to their "reef effect". The reef effect can be important to enhance marine life (biodiversity) but should also be beneficial to commercial fisheries, compensating fishers for some loss of access. However, there can also be dangers such as potentially adding to the spread of invasive species, and the research will also consider that. Ultimately, we want to find a way to ensure that offshore infrastructure is a positive addition to the marine environment and our research will be directed to that end.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5bf057548d4c117ee18ddc4b8e66c3b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5bf057548d4c117ee18ddc4b8e66c3b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2026Partners:JNCC, McGill University, Joint Nature Conservation Committee, Natural England, Swansea University +7 partnersJNCC,McGill University,Joint Nature Conservation Committee,Natural England,Swansea University,NatureScot (Scottish Natural Heritage),DEFRA,Natural England,SNH,McGill University,GU,Swansea UniversityFunder: UK Research and Innovation Project Code: NE/W006650/1Funder Contribution: 652,019 GBPHuman activities have already raised global species extinction rates a thousand-fold and have pushed an additional million species towards extinction. Biodiversity is also rapidly changing on more local scales as climate change drives the redistribution of species, and pressures such as overharvesting and habitat fragmentation intensify in many areas. Understanding how biodiversity influences ecosystem functions, such as carbon capture and fisheries productivity, is a crucial challenge directly relevant to meeting the UN sustainable development goals, and UK policy imperatives of harnessing biodiversity to achieve sustainable economic growth and using nature-based solutions to help meet 'net-zero' emissions by 2050. Since the mid- 1990s, several hundred experiments have tested how changes in biodiversity influence ecosystem functions and services, with many studies indicating that biodiversity loss does not reduce functioning as long as the single best-performing species is retained. However, these studies have focused on local-scale interactions between species in small habitat units such as grassland plots, field enclosures, or aquarium tanks; we therefore lack studies that consider BEF relationships on the larger landscape-, regional- or even national- scales most relevant to the public, ecosystem managers, and policy makers. Ecological theory suggests that biodiversity is more important for ecosystem services as scale increases due to greater environmental variation, but it cannot currently be evaluated in real ecosystems because we lack BEF studies across scales and environmental gradients. In this project we aim to bridge the gap between experiments and relevant larger scales by using Great Britain's intertidal forests as a model system. These highly productive and valuable ecosystems occur extensively around the GB's varied and complex coastlines and are formed by a manageable suite of seaweed species which can be easily manipulated across multiple distinct environmental gradients. To meet our overall aim, we will incorporate multiple environmental factors into experiments, observations and models delivered across three inter-linked work packages which together provide a generalised approach and scaling relationships for BEF. Our first work package uses a 100km stretch of the south Wales coastline - which incorporates gradients in wave exposure and turbidity - as an accessible template to experimentally test the causal effect of intertidal forest biodiversity on ecosystem functioning from small patches to the whole coastline. Our second package combines a network of standardised observations in intertidal forests around GB, with satellite remote sensing and statistical modelling, to test how BEF relationships scale-up -- from 1 m to 1000km scales -- in naturally assembled communities. The third and final work package uses the new experimental and observational data to inform dynamic models, allowing us to test how species traits such as dispersal and environmental tolerances interacts with environmental variability to determine BEF relationships across scales. A key innovation here is the explicit - and empirically informed - integration of spatial environmental variability in multiple environmental factors. These will be generalised to represent how the environment varies in a range of different ecosystems from forests, to agricultural landscapes, and to coral reefs. The advancement of our project aim will deliver a revised appreciation of the role of diversity in ecosystems and demonstrate a generalizable approach for upscaling biodiversity - ecosystem functioning relationships. We anticipate that this will feed into predictions for how biodiversity changes will influence ecosystem functioning and services on large, relevant- scales, in intertidal forests and beyond, with a range of applications from natural capital models, to the design of large-scale ecosystem restoration projects.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::db3c782c2e571e155529f0d4d6f59d45&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::db3c782c2e571e155529f0d4d6f59d45&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2027Partners:University of Leeds, University of California Riverside, UZH, York Museums Trust, York Museums Trust +9 partnersUniversity of Leeds,University of California Riverside,UZH,York Museums Trust,York Museums Trust,JNCC,Yale University,Joint Nature Conservation Committee,SFI,University of Zurich,University of California, Riverside,UCR,Yale University,University of LeedsFunder: UK Research and Innovation Project Code: NE/X015025/1Funder Contribution: 742,488 GBPA thorough understanding of extinction events has never been more important as we are entering a biodiversity crisis that is being heralded as the "Sixth Mass Extinction". But are we really heading for a mass extinction and how will this current event compare to the catastrophic biotic crises of the geological past? The geological record provides a wealth of information for studying ecosystem dynamics and collapse under rapid climate change and understanding these events may be key in helping to predict the consequences of anthropogenic warming for existing and future marine ecosystems. One great unanswered extinction question is why do rapid warming events of the Palaeozoic and Mesozoic consistently trigger mass extinction whereas similarly extreme climatic events of the Cenozoic do not? An argument put forward to explain this mismatch is that modern ecosystem structure was established in the early Cenozoic in the aftermath of the Cretaceous-Paleogene mass extinction (66 Ma) and that the reason for the lack of Cenozoic mass extinctions lies in the increased robustness of modern marine ecosystems. However, palaeobiological studies of extinction currently lack critical sources of information about how organisms interact with one another within ecosystems. We know from contemporary ecological studies that interactions between organisms play a pivotal role in the structure, function and resilience of modern ecosystems. Therefore, it makes it very difficult to interpret the dynamics of extinctions and ecosystem collapse across mass extinction events without a good understanding of the biotic interactions within communities. CASCaDE will drive a fundamental change in extinction palaeobiology via a novel and cross-disciplinary approach combining recent advances in ecological modelling with palaeontology. Specifically, we will test the role of marine ecosystem robustness and stability (which is determined by predator/prey interactions in food webs) in determining vulnerability to climate-triggered extinction cascades. We will investigate various periods of rapid global warming in the geological record - some that triggered mass extinction and others that did not. We will use a computer modelling approach to simulate several hypothetical extinction scenarios on fossil ecosystems pre-dating the climatic change events. These scenarios will be developed to represent known environmental stresses associated with rapid greenhouse warming i.e. rise in ocean temperature, ocean anoxia, and ocean acidification. We will then test which hypothetical extinction scenario best predicts post-event ecosystem structure. Specifically, we will test the hypothesis that differences in Palaeozoic/Mesozoic and Cenozoic food web structure and ecosystem resilience interacted with extreme climatic conditions differently leading to wholesale ecosystem collapse in the Palaeozoic and Mesozoic but not in the Cenozoic. We will also explore how uncertainty in the reconstruction of the food webs linked to varying fossil preservation potential might influence out predictions. CASCaDE aims to push quantitative palaeobiology and conservation biology into new territory via modelling biotic interactions within ancient ecosystems and enabling predictions of extinction risk to rapid warming in modern marine ecosystems based upon extreme climatic events and mass extinctions in the distant past. We will apply the most likely scenarios of past climate change extinction cascades to food webs from modern marine ecosystems in order to predict whether anthropogenic global warming is likely to trigger Palaeozoic/Mesozoic-level mass extinction cascades or whether increased Cenozoic ecosystem robustness will buffer the oceans from complete ecosystem collapse.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b72b398d7d06d0727fcea0144a986c70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b72b398d7d06d0727fcea0144a986c70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
chevron_right