Powered by OpenAIRE graph
Found an issue? Give us feedback

SICS

SICS Swedish ICT AB
Country: Sweden
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
44 Projects, page 1 of 9
  • Funder: European Commission Project Code: 716864
    Overall Budget: 343,996 EURFunder Contribution: 343,996 EUR

    In the “DADIYSO COMP” project Swerea SICOMP covers the entire topic and will be the only partner. Swerea SICOMP will develop an FE-based simulation tool for rapid predictions of cure induced part distortions including sub models for cure kinetics, glass transition, and constitutive relations among other aspects. A balance between accuracy, complexity, and simulation time will be achieved which will enable the tool to be used for optimization purposes. Carbon-epoxy distortion calibration coupons and small demonstrator parts will be manufactured and measured to validate the simulation tool for rapid cure distortion predictions. The final simulation tool for cure distortions will be included in an optimisation framework to allow for shape and layup optimisation to account for cure induced part distortions. The optimization framework will evaluate which areas within the part have the most significant contribution to global distortion, and then adjust the tool/part shape and material layup in these areas to minimize the effects of distortion. Also an efficient part data (CAD + ply-book) to CAE interfacing method will be developed to import a part design into the optimisation environment, as well as the reverse process. Emphasis will be on creating tools that are accurate and robust, while maintaining a level of complexity that would not be overwhelming for a non-expert engineer in either cure distortion or optimization. Finally the entire package will be demonstrated on one or more use cases together with the topic manager. The final result of DADIYSO COMP will help designers to predict and prevent distortion in a reliable manner as well as give ideas on how to improve the design for manufacturing

    more_vert
  • Funder: European Commission Project Code: 632413
    more_vert
  • Funder: European Commission Project Code: 821019
    Overall Budget: 700,000 EURFunder Contribution: 700,000 EUR

    Process Simulation and Tool Compensation Methodology for High Temperature Composite Processes. The overall objective of ProTHiC is to develop materials, manufacturing, tooling and processing simulations technologies that enables further exploitation of carbon fibre-reinforced composites in applications where the temperature requirements are exceeding 200°C where currently only titanium or super-alloys are being used. ProTHiC will place its main efforts to: - Develop and characterize polyimide resins tailored for processing with RTM - develop, adapt and when necessary modify state-of-the-art processing simulation methodologies (curing and mould filling) to also work for high temperature composites - Validate simulation methodologies by against experimental data obtained from manufacturing trials performed on sub-components with simplified geometry (e.g. L- and T-profiles) - Establish a simulation assisted tool design process that integrates processing simulation methodologies with methodologies for tool compensation - Demonstrate the above-mentioned technologies by manufacturing of a demonstrator component that is defined together with the topic manager.

    more_vert
  • Funder: European Commission Project Code: 612212
    more_vert
  • Funder: European Commission Project Code: 258351
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.