
Henry Royce Institute
Henry Royce Institute
34 Projects, page 1 of 7
assignment_turned_in Project2021 - 2023Partners:Henry Royce Institute, Nikon Metrology UK Ltd, Nikon (United Kingdom), Nikon Metrology UK Ltd, UCL +3 partnersHenry Royce Institute,Nikon Metrology UK Ltd,Nikon (United Kingdom),Nikon Metrology UK Ltd,UCL,Henry Royce Institute,Perkin Elmer Inc,PerkinElmer (United States)Funder: UK Research and Innovation Project Code: EP/T029080/1Funder Contribution: 231,999 GBPTissue engineering - aimed at developing "lab-grown" organs and tissue by combining appropriate scaffolds and cells - could solve one of the biggest medical problems of our times, the shortage of donor organs. While the pool of scaffold materials is large (e.g. natural/synthetic biomaterials), there is consensus that the extracellular matrix (ECM) of the target tissue is an excellent choice as it possesses native structural and biomechanical properties. ECMs can be derived from cadaver tissue (e.g. from animals) through a process called decellularization, by which the tissue undergoes several cycles of flushing with detergents and enzymes. A successfully decellularised tissue is characterised by the absence of cellular material and the presence of an intact ECM. Imaging, for assessing the ECM, is an extremely important tool for the development of decellularisation methods that are simultaneously gentle and effective. This project is about developing a new imaging tool for characterising decellularised tissue based on x-ray micro computed tomography (CT). Since micro-CT is a non-destructive technique, the inspected samples can be used further in longitudinal studies or be implanted into animals to test their performance in vivo. In comparison, the current gold standard techniques for inspecting ECMs (histology, electron microscopy) require that samples are sliced, sectioned and/or stained in preparation for being imaged, prohibiting using them in any further studies. A number of substantial developments will be needed before micro-CT can become a valuable tool for validating decellularisation techniques and other methodologies in tissue engineering. Currently, micro-CT fails to meet the complex imaging needs of this field, which often requires multi-scale and multi-contrast approaches. First, a micro-CT machine with zooming in capabilities would be required to inspect the multi-level structure of ECMs. Second, decellularised tissue generally exhibits weak x-ray attenuation; hence, the micro-CT machine should provide access to phase contrast alongside attenuation contrast, which is known to provide a much better visualisation of tissue scaffolds than the latter. The micro-CT machine proposed here will have both these functionalities. It will exploit an innovative imaging mechanism that is underpinned by the idea to structure the x-ray beam into an array of narrow (micrometric) beamlets via a mask placed immediately upstream of the sample. This provides flexibility in terms of spatial resolution, as this metric - unlike in conventional micro-CT scanners - is not defined by the blur of the source and detector. Instead, resolution is driven by the beamlet width, which can be made smaller than the intrinsic system blur, bearing unique potential for fast resolution switching and multi-scale imaging. Second, it provides access to complementary contrast channels (phase, ultra-small angle x-ray scattering). These channels result from small x-ray photon deviations which occur alongside attenuation when x-rays interact with matter. While most conventional micro-CT scanners are blind to these effects, the machine proposed here will enable their detection, allowing to reconstruct three sets of complementary tomographic images for each sample. While the phase channel can provide a much higher contrast-to-noise ratio than the attenuation channel, the ultra-small angle x-ray scattering channel encodes the presence of sub-resolution features in a sample. The latter bears unique potential for image-guided zooming in. The project will culminate in the design, construction and test of an experimental prototype for image-guided multi-scale and multi-contrast imaging with a field of view of up to 10 cm by 10 cm, which may be expanded to larger dimensions in the future. A broad range of decellularised tissues will be scanned, and the results benchmarked against the current gold standard (histology or electron microscopy).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::40563f03e46b199ba90cc1b0b6af53a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::40563f03e46b199ba90cc1b0b6af53a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2021Partners:University of Manchester, University of Cambridge, Henry Royce Institute, The University of Manchester, Henry Royce Institute +3 partnersUniversity of Manchester,University of Cambridge,Henry Royce Institute,The University of Manchester,Henry Royce Institute,University of Salford,Hitachi Cambridge Laboratory,Hitachi Cambridge LaboratoryFunder: UK Research and Innovation Project Code: EP/R025576/1Funder Contribution: 702,172 GBPMost advanced materials are actually composite systems where each part is specifically tailored to provide a particular functionality often via doping. In electronic devices this may be p- or n-type behaviour (the preference to conduct positive of negative charges), in optical devices the ability to emit light at a given wavelength (such as in the infrared for optical fibre communications), or in magnetic materials the ability to store information based on the direction of a magnetic field for example. To enable the realisation of new devices it is essential to increase the density of functionality within a given device volume. Simple miniaturisation (i.e. to fit more devices of the same type but of smaller size) is limited in scope as the nanoscale regime is reached, not only by the well-known emergence of quantum effects, but by the simple capability to control the materials engineering on this scale. Self-assembly methods for example enable the creation of 0D (so called 'quantum dots' or 'artificial atoms'), 1D (wire-like) and 2D (sheet-like) materials with unique properties, but the subsequent control and modification of these is non-trivial and has yet to be demonstrated in many cases. This research aims to establish a Platform for Nanoscale Advanced Materials Engineering (P-NAME) facility that incorporates a new tool which will provide the capability required to deliver a fundamental change in our ability to design and engineer materials. The principle of the technique that we will adapt, is that which revolutionised the micro-electronics industry in the 20th century (ion-doping) but applied on the nanoscale for the first time. Furthermore, the P-NAME tool will be compatible with a scalable technology platform and therefore compatible with its use in high-tech device manufacture. Without this capability the production of increasingly complex materials offering enhance functionality at lower-power consumption will be difficult to achieve. The P-NAME facility will be established within a new UK National Laboratory for Advanced Materials (the Henry Royce Institute) at the University of Manchester. Access to the tool will be made available to UK academics and industry undertaking research into advanced functional materials and devices development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b7afa4d43b60037932031f0e34d51812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b7afa4d43b60037932031f0e34d51812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2022Partners:University of Leeds, Cummins (United Kingdom), CRODA INTERNATIONAL PLC, Croda International Plc, Cummins Turbo Technologies +5 partnersUniversity of Leeds,Cummins (United Kingdom),CRODA INTERNATIONAL PLC,Croda International Plc,Cummins Turbo Technologies,Henry Royce Institute,University of Leeds,Henry Royce Institute,Croda (United Kingdom),Cummins (United Kingdom)Funder: UK Research and Innovation Project Code: EP/R02524X/1Funder Contribution: 1,101,730 GBPThe UK engineering coatings industry is worth over £11bn and affects products worth £140bn. The vision of this project is to create internationally unique multi-purpose PVD/PECVD coatings system which will enable innovation in advanced science of future hybrid coatings. This new facility would be built on the existing Leeds coating platform capability and would create system with no similar functionality available internationally. Using existing Leeds coating platform we can already deposit carbides, nitrides and diamond-like carbide (DLC) coatings, and we are exploiting this mainly for tribological applications with automotive, energy and lubricant companies. With this investment, we will be able to additionally process novel nanocomposite coatings, next generation of DLC coatings (with incorporated nanoparticles), advanced optical coatings and sensor coatings, carry out functionalisation of powders, barrier layers, coatings on polymers and coatings on complex shapes. This proposal aligns with a major new initiative at the University of Leeds to create an integrated gateway to Physical Sciences and Engineering by investing in the collaborative Bragg Centre that will house new state-of-the-art research facilities for the integrated development, characterisation and exploitation of novel advanced functional materials. This proposal also coincides with Leeds University investment in the Nexus Centre - a hub for the local innovation community as well as national and international organisations looking to innovate and engage in world-leading research. The upgraded coating platform would play a strategic role in the UK Surface Engineering landscape and complement existing national facilities. It would form a part of the new Sir Henry Royce Institute for Advanced Materials, of which Leeds is a partner. The configuration of the new instrument is designed to be versatile and serve a wide range of internal and external users with widely different classes of advanced materials. A number of specific activities have been planned to ensure that potential beneficiaries have the opportunity to engage with new coating facility. The economic competitiveness of the UK's manufacturing industry will benefit from new, commercially exploitable IP in novel cutting-edge Surface Engineering technology. Members of an academic community and industry will be able to benefit directly from the proposed research and generated new knowledge. They will gain new skills and know-how related to the latest advancements of PVD technologies. Improved adoption of Surface Engineering will result in wider UK PLC economic and societal impacts associated with development of functional surfaces for automotive, aerospace, biomedical, healthcare, defence, agriculture, oil & gas and packaging industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15f294a3b5030de7ee29919ddc8e6fe5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15f294a3b5030de7ee29919ddc8e6fe5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Nottingham University Hospitals NHS Trust, Henry Royce Institute, Aluminium Federation Ltd, Nottingham Uni Hospitals NHS Trust, [no title available] +7 partnersNottingham University Hospitals NHS Trust,Henry Royce Institute,Aluminium Federation Ltd,Nottingham Uni Hospitals NHS Trust,[no title available],University of Sheffield,UCL Hospitals NHS Foundation Trust,Aluminium Federation Ltd,UCL,Henry Royce Institute,University College London Hospital (UCLH) NHS Foundation Trust,University of SheffieldFunder: UK Research and Innovation Project Code: EP/W010089/1Funder Contribution: 1,016,190 GBPIncremental Sheet Forming (ISF) is a flexible, cost effective, energy and resource efficient process. It only requires a simple tool to deform the sheet material incrementally by moving the tool along a predefined tool path created directly from the CAD model of a product. Without using moulds, dies or heavy-duty forming machines, it is flexible to manufacture small-batch or customised sheet products with complex geometries. However, existing ISF processes cannot manufacture hard-to-form materials, such as high strength aluminium, magnesium and titanium alloys, because these materials have limited ductility at room temperature. This EPSRC follow-on project aims to build on the initial success of an EPSRC Adventurous Manufacturing grant (EP/T005254/1) in developing a rotational vibration assisted incremental sheet forming (RV-ISF) process to manufacture hard-to-form materials for industrial applications. The RV-ISF process is centred on a novel ISF tooling to generate low frequency and high amplitude vibration in ISF processing, which produces localised heating and material softening therefore improve the material ductility without the need of additional heating or extra energy input. By developing and implementing the novel tooling, RV-ISF experimental testing of a well-known hard-to-form material has demonstrated a 300% increase in forming depth, more than 70% reduction of average grain size through microstructure refinement, 20% improvement in average hardness and up to 37% reduction of average surface roughness. To capitalise the promising findings from the EPSRC Adventurous Manufacturing grant (EP/T005254/1), this follow-on project assembles a multidisciplinary team with expertise in flexible sheet forming, material science and plasticity, advanced manufacturing technologies, novel tooling and bespoke machine systems. The aim is to develop an in-depth understanding of the material deformation mechanisms under RV-ISF processing conditions and to use this new knowledge to expand the material types and products that can be successfully manufactured using this innovative process. In working with the project partners, the follow-on project aims to deliver a range of demonstrable products and to engage in dissemination activities for a swift translation of the developed flexible, cost effective and sustainable forming process into UK's medical, automotive, aerospace and nuclear industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::94e7c28ad5deef2fcc35ffc32c7ac4ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::94e7c28ad5deef2fcc35ffc32c7ac4ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2022Partners:Henry Royce Institute, The Welding Institute, University of Bristol, University of Cantabria, Henry Royce Institute +8 partnersHenry Royce Institute,The Welding Institute,University of Bristol,University of Cantabria,Henry Royce Institute,Wood plc,UC,The Welding Institute,NDE Research Association RCNDE,John Wood Group plc,The Welding Institute,NDE Research Association RCNDE,University of BristolFunder: UK Research and Innovation Project Code: EP/S012362/1Funder Contribution: 283,716 GBPThe NDECA project aims to extend the applicability of fracture mechanics methods for predicting the behaviour of structures/components containing non-sharp flaws. Many defects formed during manufacture or in service (e.g. porosity, dents or corrosion pits, weld defects, etc.) and certain design features (e.g. crevices in partial penetration welds) are not sharp i.e, have non-zero crack tip radius. Common structural integrity assessment procedures- such as R6 [1] and BS7910 [2]- use fracture mechanics principles for the assessment of flaws that are assumed to be infinitely sharp. While this approach is appropriate for planar (2D) flaws, such as fatigue cracks, it can be excessively conservative for non-sharp defects, leading to erroneous decisions (replace/repair/re-inspect), thus reducing assets cost-effectiveness (through increasing operating costs and/or reducing service life). Several assessment methods have been proposed in the literature to quantify the additional margins of safety of non-sharps defects compared to the margins that would be calculated if the defects were assumed to be sharp cracks. Unfortunately, the validation and application of these methods is currently limited by the lack of both credible non-destructive evaluation (NDE) techniques to distinguish between sharp and non-sharp flaws and; representative and reproducible effective fracture toughness testing procedures. Therefore, this proposal will focus in the: -Development and validation of novel NDE methodologies for accurate notch-tip acuity characterisation; -Development of recommendations for future fracture mechanics-based test methods to account for the defect topology on the resistance to failure. This multidisciplinary effort - it cuts across multiple academic fields, i.e. ultrasonics and NDT, mathematical modelling, engineering structural integrity, finite element analysis, and engineering design - will produce a step change improvement in damage tolerance methods for the next generation of design (by analysis) and structural integrity procedures of high integrity structures, allowing enhanced efficiency of assets. The project is supported by TWI, Wood, RCNDE, University of Cantabria and BP. NDECA takes advantage of the UK's leadership and experience on the development of structural integrity assessment procedures (TWI, Wood, BP), the application of NDE methods for defect characterisation (University of Bristol Ultrasonics and NDT group, TWI and RCNDE members) and experience with FEA damage simulation and testing of non-sharp defects (Larrosa [PI], Wood, University of Cantabria). The timeliness and critical needs for this project are reflected in requirement for more precise methods in life extension programmes for in-service nuclear power plants and Oil and Gas high integrity assets which are currently at (or close to) the end of the design life. References 1. R6 - Revision 4, Assessment of the Integrity of Structures Containing Defects, Latest Updates: March 2015. EDF Energy, Gloucester, UK. 2. BS7910: 2013+A1:2015, incorporating Corrigenda Nos.1 and 2, 2016. Guide to Methods for Assessing the Acceptability of Flaws in MetalliMetallic Structures. British Standards Institution, London.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15eb1191f1f30581e206ba05e841f955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15eb1191f1f30581e206ba05e841f955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right