
HYDROGENIOUS LOHC TECHNOLOGIES GMBH
HYDROGENIOUS LOHC TECHNOLOGIES GMBH
5 Projects, page 1 of 1
Open Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:HYDROGENIOUS LOHC TECHNOLOGIES GMBHHYDROGENIOUS LOHC TECHNOLOGIES GMBHFunder: European Commission Project Code: 757082Overall Budget: 3,260,270 EURFunder Contribution: 2,282,190 EURHydrogenious Technologies is a pioneer and global industry leader in the field of hydrogen storage and transportation in Liquid Organic Hydrogen Carriers (LOHC). Hydrogen is a chemical energy carrier widely used in a range of industrial applications with large growth potential in the field of low-emission mobility and energy. However, due to the low density of hydrogen gas, storage and transportation of hydrogen using today’s technologies is technically challenging, inefficient and very expensive. Hydrogenious' patented technology enables safe and cost-efficient high-density hydrogen storage in an easy-to-handle oil, thus eliminating the need for pressurized tanks for hydrogen storage and transportation. The LOHC used is non-toxic, almost inflammable, and offers a five-fold increase in storage capacity, compared with standard high pressure technology. LOHC will reduce the operating cost of hydrogen transport by up to 80% and open up new business opportunities for users. In the long term, LOHC technology will allow smart integration of renewable energy by enabling hydrogen mobility and sector coupling and will thus help decarbonize the world. Initially, Hydrogenious plans to focus on the market for hydrogen logistics, followed by the market for mobility refueling solutions (fuel cell vehicles). Hydrogenious' technology has already attracted strong interest from a number of potential customers, including sales contracts worth ~1.5 Mio. € already signed. The goals of the Phase II project are to (i) develop a highly dynamic, fully automated hydrogen release system (the "ReleaseBOX"), (ii) to reduce price, complexity and delivery time and (iii) to prepare commercial roll-out in key EU countries. Hydrogenious is targeting revenues in excess of €90m, with 235 employees, three years after completion of the project. The LOHC technology can be an important enabler for a strong European hydrogen economy and has the potential to create many thousands of indirect jobs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f637e22c4c76154c903d9865d25abcf9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f637e22c4c76154c903d9865d25abcf9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2018 - 2022Partners:FAU, OY WOIKOSKI AB, HYDROGENIOUS LOHC TECHNOLOGIES GMBH, TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, HyGear B.V.FAU,OY WOIKOSKI AB,HYDROGENIOUS LOHC TECHNOLOGIES GMBH,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,HyGear B.V.Funder: European Commission Project Code: 779694Overall Budget: 2,499,920 EURFunder Contribution: 2,499,920 EURHydrogen is a versatile energy carrier that will allow the EU to accomplish its strategic targets of zero-emission mobility, integration of renewables and the decarbonisation of industry. However, its low density and explosive nature make hydrogen storage and transport technically challenging, inefficient and very expensive. The Liquid Organic Hydrogen Carrier (LOHC) technology enables safe and efficient high-density hydrogen storage in an easy-to-handle oil, thus eliminating the need for pressurized tanks for storage and transport. The HySTOC project will demonstrate LOHC-based distribution of high purity hydrogen (ISO 14687:2-2012) to a commercially operated hydrogen refueling station (HRS) in Voikoski, Finland, in an unprecedented field test. Dibenzyltoluene, the LOHC material used within HySTOC is not classified as a dangerous good, is hardly flammable and offers a five-fold increase in storage capacity compared with standard high pressure technology, leading to a transport cost reduction of up to 80%. HySTOC comprises 5 partners (including 2 SMEs, 1 industrial and 2 scientific partners) from 3 European countries (Finland, Germany, The Netherlands). The partners cover the whole value chain from basic research and testing (FAU & VTT) through core technology development (Hydrogenious Technologies and HyGear) to the end-user that will operate the LOHC-based hydrogen infrastructure (Woikoski). The comprehensive and complementary mixture of expertise and know-how provided by the consortium ensures not only an efficient realization of the technical and (pre )commercial objectives of the project, but also the subsequent dissemination and exploitation of the achieved results to maximize its impact within the consortium and the hydrogen market as a whole. In the long term, the LOHC technology developed within HySTOC will allow integration of renewable energy by making it available to hydrogen mobility in an easy-to-handle form and will thus help decarbonize the world.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c228bea4ee8a4ef22cd1d4fa079b63a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6c228bea4ee8a4ef22cd1d4fa079b63a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2024Partners:UPV/EHU, FAU, EVONIK DEGUSSA GmbH, LETI, NWU +2 partnersUPV/EHU,FAU,EVONIK DEGUSSA GmbH,LETI,NWU,HYDROGENIOUS LOHC TECHNOLOGIES GMBH,Q8ResearchFunder: European Commission Project Code: 101007223Overall Budget: 2,563,320 EURFunder Contribution: 2,563,320 EURLiquid Organic Hydrogen Carriers (LOHC), consisting on a reversible transformation catalytically activated of a pair of stable liquid organic molecules integrated on hydrogenation/dehydrogenation cycles, are attractive due to their ability to store safely large amounts of hydrogen (up to 7 %wt or 2.300 KWh/ton) during long time and release pure hydrogen on demand. Proof of concept and some commercial solutions exist but still suffer from high cost and energy needed to facilitate catalytic reactions. In order to reduce the system cost for LOHC technology to 3 €/Kg for large scale applications SherLOHCk project targets joint developments consisting on :i) highly active and selective catalyst with partial/total substitution of PGM and thermo-conductive catalyst support to reduce the energy intensity during loading/unloading processes: ii) novel catalytic system architecture ranging from the catalyst to the heat exchanger to minimize the internal heat loss and to increase space-time-yield and iii) novel catalyst testing, system validation and demonstration in demo unit (>10 kW, >200h); to drastically improve their technical performances and energy storage efficiency of LOHCs: A combination of challenges for the catalyst material, catalyst system and their related energy storage capabilities will constitute the core of a catalyst system for LOHC, that will be validated first at a lab scale, then in a demo unit > 10kW. As a whole they will enable the reduction of Energy intensity during loading/unloading processes, a higher efficiency and increased lifetime. Technological, economical and societal bottlenecks are considered to determine the economic viability, balance of energy and the environmental footprint of novel catalyst synthesis route. Scale-up of the obtained solutions will be carried out together with technology comparison with other hydrogen logistic concepts based on LCA and TCO considerations to finally improve economic viability of the LOHC technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::acbb41fafd0e18e6a0e5f98d94ec69a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::acbb41fafd0e18e6a0e5f98d94ec69a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2026Partners:PROCESSI INNOVATIVI SRL, TUM, SYPOX GMBH, UNIME, Luleå University of Technology +3 partnersPROCESSI INNOVATIVI SRL,TUM,SYPOX GMBH,UNIME,Luleå University of Technology,HYDROGENIOUS LOHC TECHNOLOGIES GMBH,AALTO,TU DelftFunder: European Commission Project Code: 101070976Overall Budget: 3,502,970 EURFunder Contribution: 3,502,970 EUREPOCH proposes to develop a novel approach in linking green hydrogen production with the direct loading of liquid organic hydrogen carriers (LOHC) enabling a transformative logistic of green hydrogen distribution and storage. Lignin derivatives are used to be selectively oxidized. Compared to water electrolysis, EPOCH will advance the field by (1) using the nascent hydrogen at the cathode directly to load LOHCs allowing economic H2 storage and transport, and (2) converting at the anode waste lignin and its derivatives via selective oxidation. EPOCH is beyond the state-of-the-art solutions, as it does not form molecular H2 at the cathode nor generates oxygen at the anode. By modifying both cathodic and anodic reactions, EPOCH reduces the energy intensity. EPOCH will enable better cell performance and enhanced added-value device operations by (i) improving energy efficiency, (ii) allowing cost reductions, and (iii) intensifying the process. The EPOCH device will be designed for flexible integration with biorefineries and pulp & paper industries, to valorize their lignin waste streams, thus, linking these industrial sectors and H2 economy. EPOCH will allow the production of green H2 in areas where renewable energy production (in the energy mix) is higher. Therefore, EPOCH will offer a new path to effectively decrease the carbon footprint of energy-intensive industries. Development of the novel EPOCH electrocatalytic device requires (a) advanced components (electrocatalysts, electrodes, electrolytes and ionic liquid promoters, membranes) and (b) validation of the full module cell operation at laboratory scale. Thus, our project integrates multidisciplinary top-experts in areas such as electrocatalysis, lignin chemistry, and materials synthesis, with a large engineering company and a spin-off company on energy transition and a SME world-leading the LOHC technology development and logistic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d3073094262fc9b98d16feca14f0a85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d3073094262fc9b98d16feca14f0a85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:ATTICA GROUP, TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, TEKNOTHERM MARINE AS, JOHANNES OSTENSJO DY AS, Hydrogenious Lohc Maritime AS +15 partnersATTICA GROUP,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,TEKNOTHERM MARINE AS,JOHANNES OSTENSJO DY AS,Hydrogenious Lohc Maritime AS,SIEMENS ENERGY AS,TEKNOTHERM MARINE HVAC SP. Z O.O.,HLM GERMANY GMBH,Østensjø Rederi (Norway),FAU,DNV,DELTAMARIN OY,HYDROGENIOUS LOHC TECHNOLOGIES GMBH,ΑΝΕΚ LINES,NTUA,National Centre of Scientific Research Demokritos,EDDA WIND X AS,ENGITEC SYSTEMS INTERNATIONAL LIMITED,MCTW,ASTILLEROS GONDAN SAFunder: European Commission Project Code: 101056723Overall Budget: 14,999,500 EURFunder Contribution: 14,999,500 EURSHIP-AH2OY project will develop a scalable, green and sustainable technology for power and heat generation on board ships. The concept is based on the combined use of hydrogen fuel cells (FC) and liquid organic hydrogen carrier (LOHC) with efficient heat integration. The developed FC/LOHC powertrain will be demonstrated on board a vessel Edda Brint owned by Ostensjo. The SHIP-AH2OY project aims to achieve the following high-level targets: 1. Use of LOHC as the hydrogen storage technology to allow use of existing infrastructure (transport, bunkering, etc) 2. Integration of the hydrogen power unit on board an existing and available ship and the demonstration of the efficient operation of the power plant using green hydrogen. 3. Scalable system architecture for larger ships and power plants by integrating several 1 MW FC/LOHC modules enabling power requirements well in excess of 3 MW. 4. A replication study for the developed FC/LOHC system allowing easy replication in e.g. service vessels and ROPAX-vessels. Basis of the project is the strong commitment of the wide range of industry partners to realize zero-emission shipping. The partners have an already pre-prepared vessel earmarked for the project and plans to retrofit several other vessels with FC/LOHC systems after the first successful demonstration of the technology. As the consortium covers the whole value chain from design-offices and class-society to ship builders, owners and operators, efficient dissemination and exploitation of the results will be a natural outcome of the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f4f959ca34803f3bf1de9da8c0d19f98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f4f959ca34803f3bf1de9da8c0d19f98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu