
ARCELIK
ARCELIK
52 Projects, page 1 of 11
Open Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:ARCELIKARCELIKFunder: European Commission Project Code: 751898Overall Budget: 145,846 EURFunder Contribution: 145,846 EURIndependent control over the light and heat transfer is a key target for advanced electrochromic smart glass. Existing commercial electrochromic glasses most often employ thin films of transition metal oxides as the active material which dynamically change color under applied potential. Thus the amount of solar heat and lighting input of the building are controlled. Unfortunately, these glasses suffer from significant drawbacks related to cost, durability, functionality and color. According to "Electrochromic Glass and Film Markets–2014-2021", the market for electrochromic (EC) glasses was small - just over $ 15 million in 2015, but it will reach more than $700 million by 2020. The development of simple, economical, and scalable methods for preparing high-performance electrochromic materials and transparent electrode will endow electrochromic devices with integrated multiple functionalities and wider applications. Motivated by the benefits of electrochromic materials and devices for significant energy saving from reduced heating and cooling loads, the proposed project MAESDOSO aims to develop electrochromic devices for use in domestic ovens. The targeted device configuration will be entirely new in the home appliance market. Reduction of heat losses through glass of doors will be achieved by reflection of infrared radiation using low emissivity coatings on transparent conducting oxide. Integrating the current smart glass technology into the home appliance technology will contribute to reduce the cost of operation, increase the efficiency of the applied appliance and fulfill the aesthetic demands of the user. Application of the smart glass technology into the oven technology will contribute directly in developing alternative resources for energy saving applications complementary to the European Union Horizon 2020 objectives and contribute EU to achieve 20% energy savings by 2020.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f1650f42d7025f73039e2a1a0dd7e723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f1650f42d7025f73039e2a1a0dd7e723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2019Partners:ARCELIKARCELIKFunder: European Commission Project Code: 746094Overall Budget: 145,846 EURFunder Contribution: 145,846 EURPollutants released directly to the air are particularly harmful compared to soil and water pollutants. These pollutants severely affect people’s life quality and life expectancy. Indoor air purification at highly populated urban areas is technically challenging, because indoor air contaminants arise from both outside and indoor sources. The most hazardous indoor pollutants are volatile organic components, toxic inorganics, dust, bacteria, pollen and mold spores. Conventional ventilation brings outdoor air pollution inside the buildings and thus increases energy consumed for cleaning per room. Adapting new technological advances will help meeting requirements of a compact, reliable, and eco-friendly design. The main objective of this proposal is therefore to develop the next generation air purifiers where photocatalytic oxidation (PCO) technologies will allow elimination of a variety of hazardous indoor air pollutants, and bad odour caused by such pollutants, when illuminated by low-power light sources on-the-fly. The proposed project composes of four different phases: the state-of-the-art design of photocatalysts, selection of proper illuminating source, configuration of PCO system, and preparation of the first prototype. In this study, we will address the limited work performed within the field hitherto, such as the mechanism of catalyst deactivation, efficiencies of odour removal, generation of by-products, electron-hole recombination phenomenon, and the ways of providing anti-bacterial/good hygiene properties. We will carry out an in-depth investigation on optimization of PCO air purification system within an interdisciplinary work at Arçelik Central R&D. After designing a viable configuration, we will focus on the production of a PCO air purifier prototype. In accordance with Arçelik Group’s policy and vision, our final goal is to ready the highly energy-efficient, low-noise, and reliable PCO air purifier prototype for the product launch in the global market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cdc11cd112d542ccb30f4e3ad8a90bfe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cdc11cd112d542ccb30f4e3ad8a90bfe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2023Partners:WAT MOTOR, ARCELIKWAT MOTOR,ARCELIKFunder: European Commission Project Code: 101031029Overall Budget: 157,356 EURFunder Contribution: 157,356 EURThe demand for electrical energy increases at a steady pace worldwide due to the growing and emerging applications such as server/telecom farms, 5G base station, more-electric aircrafts, consumer electronics, robotics, and electric vehicles. The volume and efficiency of the power converters utilized in these systems play a critical role for the fulfillment of this growth. Higher efficiency translates into more capacity utilization and less cooling efforts, whereas low volume and weight usually reduces the cost of the electronic components. Both of these aspects heavily depend on the innovations on the power topologies, control algorithms, magnetics, thermal substrates, and particularly power semiconductor switches. The power converter topologies in the literature have been invented to overcome or mitigate the large reverse recovery and output charge of Si power devices, while magnetics are optimized for switching frequencies that are achievable with Si power devices. However, the maximum efficiency and power density of Si based converters have already reached to its theoretical limit through innovations on the control and converter topologies. Recently, the adoption of the wide band-gap semiconductors has escalated the expectations from power electronics significantly, and initiated the transformation of the power architecture through new topologies and control innovations, while bringing new challenges in the high frequency domain. This research proposal is intended to innovate, design, and implement a new front-end PFC converter switched at >400 kHz to achieve best in-class efficiency and power density with targets of more than 98.5% peak efficiency and 85W/in3 enclosed power density at 3.7kW output power. The know-how and framework will then be engineered to meet certain industrial specs of various applications including the pre-regulator stage of server/telecom supplies, on-board chargers, industrial drives.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae89a73664a56d6c1a60649b09214443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ae89a73664a56d6c1a60649b09214443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2019Partners:OPA, University of Manchester, ATC, ΟΠΑ - ΕΛΚΕ, CNR +5 partnersOPA,University of Manchester,ATC,ΟΠΑ - ΕΛΚΕ,CNR,CRF,SIMPLAN,Software (Germany),BOC,ARCELIKFunder: European Commission Project Code: 723541Overall Budget: 3,468,310 EURFunder Contribution: 3,468,310 EURIndustry 4.0 is the next developmental stage in the organisation of the manufacturing value chain. ICT-based systems will play a major role, mainly by creating a virtual copy of the physical world and facilitating decentralised structures through Cyber-Physical Systems (CPS). Over the IoT, CPS cooperate with each other and humans in real-time. Via the Internet-of-Services, internal and cross-organisational services are utilised by participants of the value chain. DISRUPT aims to spearhead the transition to the next-generation manufacturing by facilitating the vision of a "Smart Factory". The new era of manufacturing asks for flexible factories that can be quickly reprogrammed to provide faster time-to-market responding to global consumer demand, address mass-customisation needs and bring life to innovative products. The traditional automation pyramid seems unable to accommodate this transformation. Our concept is to DISRUPT that pyramid by utilising the capabilities offered by modern ICT to facilitate (i) in-depth (self-)monitoring of machines and processes, (ii) decision support and decentralised (self-)adjustment of production, (iii) effective collaboration of the different IoT-connected machines with tools, services and actors (iv) seamless communication of information and decisions from and to the plant floor and (v) efficient interaction with value chain partners. Within DISRUPT, each element of production is controlled via the IoT by its virtual counterpart. The data collected is analysed to detect complex events that trigger automated actions. DISRUPT offers a set of decision support tools based on three core modules (modelling, simulation and optimisation) and a secure and flexible "plug-n-play" platform that will allow engineers from different disciplines to collaborate in developing services. It will be cloud-based to accommodate the anticipated high data volume and computational needs, while offering accessibility via any device anywhere in the world.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::905ab8b9c4f428c29e09d05df5ed7a85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::905ab8b9c4f428c29e09d05df5ed7a85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2025Partners:Goa University, LPL, ARCELIK, IREN SPA, Elektro Ljubljana, d.d. +6 partnersGoa University,LPL,ARCELIK,IREN SPA,Elektro Ljubljana, d.d.,LA SOLAR ENERGIA,ULUDAG ELECTRICITY DISTRIBUTION INCORPORATED COMPANY,C.I.P CITIZENS IN POWER,MIWENERGIA,algoWatt,RDIUPFunder: European Commission Project Code: 101096946Overall Budget: 2,882,180 EURFunder Contribution: 2,317,390 EURThe large scale integration of renewable energy sources (RES) has introduced a new operating paradigm. Renewable energy sources are characterized by uncertainty and volatility. Moreover, overloading of transmission and distribution feeders have become more frequent. The curtailment of renewable power generation has thus increased, contradicting the goals for high shares of RES. A valuable solution to these challenges is the introduction of flexibility from flexible resources and loads. In this context, FlexCHESS project proposes cutting-edge solutions based on digital twin concept, Virtual energy storage systems (VESS) and Distributed Ledger Technology (DLT) to revolutionize the existing practices. Based on the aggregation of Connected Hybrid Energy Storage System (CHESS), FlexCHESS improves the grid stability while increasing the profitability of its installations by guaranteeing various ancillary services at the distribution and transmission network levels. FlexCHESS will also ensure the highest level of interoperability of the proposed solutions and enhance the innovation capacity and competitiveness of SMEs and Startups in Europe by unlocking access to meaningful information and co-creating new business opportunities. This will be achieved by the appropriate promoting of open innovation and making smart technologies an asset for intelligent business. In order to validate and evaluate the proposed solutions, five pilot sites demonstrations with diverse assets in different European countries are planned. The aggregation and optimization of different resources will be extended to take into account not only electrical energy storage systems (ESS), but also multi-ESSs. Thus, FlexCHESS project will define different scenarios allowing to evaluate the performances and flexibility capability of CHESS. FlexCHESS project Consortium gathers 3 universities, 2 large companies, 3DSOs, 4 SMEs, and 2 NGO.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a786195eea9527c25b84bdb7d12cbc2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a786195eea9527c25b84bdb7d12cbc2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right