Powered by OpenAIRE graph
Found an issue? Give us feedback

Soil Association

Soil Association

12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: ES/Z502807/1
    Funder Contribution: 1,766,840 GBP

    Transforming food systems in the context of climate change, biodiversity loss, soil fertility depletion, water pollution, food insecurity, and diet-related diseases requires the socially just development and implementation of new ideas, practices, or technologies that can address the drawbacks of our 'broken' food system. The current interest in the UK on expanding Dynamic Food Procurement (DFP) and the key role of place-based public food procurement through its significant buying power is increasingly recognised as having the potential to make large-scale changes along food supply chains (from farm to fork), leading to sustainable food system transformation. This project proposes to leverage place-based public food procurement to drive a shift to more inclusive, sustainable, healthy, diverse and resilient local food systems facilitated by open-source socio-technical innovations including dynamic food procurement, 'market dialogues' and market 'devices' such as group certification. We will conduct four case studies to identify the opportunities for place-based public food procurement, examine the barriers/constraints and challenges, co-design and implement locally driven solutions which will reduce environmental and financial costs of public food procurement while delivering positive economic, social, nutritional, and environmental outcomes. We will co-develop the project with end-users (producers and procurers) to embed impact throughout and will co-produce a range of outputs including an open access web-based tool kit for assessing the sustainability impacts of place-based public sector food procurement, and a multimedia support package to guide the set-up of new networks/partnerships. Building on direct experience of Open Food Network UK (OFN) as a project partner in facilitating successful pilot studies in Wales and aligned with the National Food Strategy's recommendation for expanding DFP in the UK, the overall aim of this research is to critically evaluate the conditions in which place-based public food procurement networks, utilising open-source socio-technical innovations, can scale to deliver the transformative changes needed for socially just transitions in food systems in different geographical settings within the UK. It will generate new insights from developing place-based collaborative public sector food procurement partnerships across 4 sites in the UK aimed at promoting community-led local food systems that are environmentally sustainable, economically fair and socially just. The project will address the following objectives: Obj1: Identify the opportunities and challenges faced by small-scale producers and public procurers in building place-based public food procurement networks. Obj2: Identify the characteristics, opportunities and challenges relating to the application and further development of open-source socio-technical innovations for place-based public sector food procurement involving small-scale producers. Obj3: Critically evaluate the role of place-based governance frameworks in creating an enabling environment for place-based public procurement networks involving small-scale producers. Obj4: Identify and apply the most appropriate indicators to monitor and communicate the sustainability impacts, climate resilience, and social value of open-source socio-technical innovations for place-based public sector food procurement from small-scale producers. Obj5: Enhance collaboration between small-scale producers and procurers through open-source socio-technical innovations, market dialogues, and policy recommendations.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X004686/1
    Funder Contribution: 424,176 GBP

    Although agroforestry (integrating trees or shrubs on pasture or crop farmland) has great potential to provide ecosystem services and address multiple climate change challenges, it is not widely practiced in the UK. Strategic planning and successful implementation require more knowledge on achieving optimal environmental benefits, balanced with information of the associated socio-economic, cultural and policy incentives, barriers, and challenges to increasing agroforestry. Bringing together a strong multidisciplinary team of social and environmental scientists with partners who are practitioners and stakeholders in woodland and agricultural organisations, the FARM TREE project addresses these needs by exploring which planting scenarios might work best under different combinations of environmental and socio-economic conditions. Hereby, we will evaluate planting strategies (e.g., regional or landscape priority areas or species), as well as farm level planting designs (species and spatial organisation of planting) within the context of different strategies. Providing knowledge on which planting scenarios realistically work best where, combined with tools and pathways on how to achieve this will: (1) improve farmer decision making, (2) aid the development of better targeted and more flexible policies and grant schemes, and (3) ultimately lower barriers for tree expansion on farmland. We take a holistic approach to benefits and inherent trade-offs and consider that tree planting decisions are subject to diverse factors, from the personal to the policy level; but also focus in on carbon sequestration and water use solutions, alongside wider environmental benefits. We will provide an interactive web-based decision support tool to guide tree expansion on farmland; and identify how public policies (regulations, grant schemes) and market-based measures interact to incentivise (or deter) planting. The research will be articulated around three integrated work packages (WP). In WP1, we will collate socio-economic incentives and barriers from the land manager perspective, building on existing UK initiatives and farmer networks of project partners in agroforestry. Using participatory research methods, WP1 will identify farm level opportunities and constraints to integrate trees using designs that fit well into farming systems. At the national level, we will focus on insights relating to strategic policies that create opportunities for agroforestry expansion. WP2 will investigate the spatial and temporal effects of agroforestry strategies and designs on water and carbon cycling at the national/landscape and farm scale, while also considering soil health and biodiversity. For diverse landscape and farm settings, it will identify planting scenarios that deliver optimal ecosystem services, now and under future scenarios. This will be achieved via integrated ecohydrological and carbon modelling and build on previous woodland landscape capability mapping for ecosystem services and data from demonstrator farms. Integrating outcomes from WP1 and WP3, it will also deliver a set of scenarios that consider socio-economic constraints alongside the environmental benefits. WP1 and WP2 are fully integrated via WP3, which involves the iterative development of viable tree planting scenarios on farms that consider socio-economic and environmental aspects within UK landscapes. Co- developed with project partners and stakeholders, decision support tools (interactive website for farmers; policy briefings; and recommendations for long term farmer-led innovation monitoring labs) form key outputs.

    more_vert
  • Funder: UK Research and Innovation Project Code: MR/S032126/1
    Funder Contribution: 1,223,990 GBP

    In order to sustainably secure global food for a growing population, it is critical that crop dependence on chemical-based fertilisers (e.g. nitrogen, phosphorus, potassium) is reduced and alternative water supplies identified which address water scarcity issues. Agriculture is the largest consumer of available freshwater (70%) with demand expected to increase by a further 19% by 2050. The depletion of global phosphorus and potassium reserves within 100 years also pose major threats to future fertiliser supply and our ability to grow enough food. One of the most promising options to secure future agricultural productivity is the use of wastewater treatment by-products, including sludges and Treated Wastewater (TWW). However, chemicals used in our everyday lives, including pharmaceuticals (e.g. prescription and non-prescription), personal care products (e.g. soaps, disinfectants) and fibres (e.g. plastics) can pass through wastewater treatment plants and contaminate the TWW and sludges. These pollutants are referred to collectively as "contaminants of Emerging Concern" (ECs). Our ability to boost yields and nutritional content of food to meet future demand may be impacted by the presence of ECs in soil-plant systems. Pharmaceuticals, in particular, are biologically active chemicals and their presence in agricultural systems could result in undesired toxic effects for plant, soil and human health. Pharmaceuticals are now ubiquitous global contaminants; however, our scientific understanding of potential ecosystem risks posed by these pollutants is scarce, especially in agricultural systems. Research has established that plants can accumulate pharmaceuticals that persist in soils, but we know very little about impacts of >1,500 pharmaceuticals estimated to be in current use on plant and soil health and ultimately crop productivity. The proposed programme of research for the first phase of the Fellowship aims to fill these knowledge gaps by uniting scientific expertise to explore the: 1. Impact of pharmaceuticals associated with sludges and TWW on soil functioning in relation to maintaining sustainable agricultural production 2. Accumulation and effects of pharmaceuticals on plant health and implications for crop productivity 3. Assessment of the risks in the future (20-100 years) accounting for changes in land use, climate and associated changes in application rates of sludges and TWW The second phase of the Fellowship will use the science platform created during the first phase to investigate the impact of a wider range of ECs that have the potential limit agricultural productivity such as nanomaterials and plastics as well as exploring solutions to mitigate against observed effects. Application of wastewater by-products to land is an accepted practice in a number of countries where populations have a relatively high use of pharmaceuticals (e.g Israel, Southern Europe, Southwest US). Pharmaceuticals have been identified in soils receiving sludges and TWW, and coupled with a recent drive to increase the use of TWW for agricultural irrigation in countries experiencing water shortages, there is an urgent need to establish the global risks of these chemicals in our agricultural systems. Whilst the UK does not currently use TWW for agricultural irrigation, the Environment Agency has suggested there will be significant water supply deficits in the UK by the 2050s. TWW may therefore offer a means of supplementing our demand for freshwater irrigation; however, this solution must be evaluated to ensure environmentally safe protocols are established which promote agricultural sustainability. Outputs of this research will also provide effective evidence for use by non-academic end users (e.g. environmental regulators, water industry, agricultural sector), guiding post-Brexit TWW reuse policies to ensure the UK maintains a world-leading position on mitigating risks of ECs in the environment whilst maximising sustainable reuse.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/X017397/1
    Funder Contribution: 287,689 GBP

    "Sustainable food production" - the process by which we feed the ever-growing world population - is at the top of every agenda. To deliver sustainable food production, it is essential that livestock live in excellent conditions and are healthy throughout their lives. Gastrointestinal parasitism is a direct challenge to this due to negative consequences on animal health and welfare and on the environment. In addition, parasitic disease directly results in a 30% increase in greenhouse gas emissions, which exacerbates climate change and so also threatens food production. Drugs are often used to treat parasitic disease, but resistance to the drugs that kill these types of parasites is now widespread throughout the world, with a prevalence of nearly 100% in many countries. This leads to worldwide costs for food soaring by billions of pounds. In other words, the continuous use of drugs in livestock over the last 60 years has been positive in that it has increased livestock productivity and profitability, but the positive effects of the current generation of drugs (known as anthelmintics) is under threat due to global challenges, including antimicrobial resistance, climate change and maintenance of biodiversity. This project therefore directly addresses the impact that parasitism has on sustainable food production. It does this by using a low-value by-product for the UK's forestry industry and by incorporating this by-product into a next generation natural dietary supplement for livestock. Natural compounds extracted from plants (often called plant secondary metabolites (PSM)), are known to disrupt the life cycle of parasitic nematodes both in the animal and in the environment. PSM can therefore act as anthelmintics, controlling the disease these parasites cause. However, using a single pure PSM is expensive. Attention has therefore turned to PSM-rich extracts that contain a complex mixture of PSM as this is cheaper. However, this approach is hampered by large variations in the PSM content. Variability in PSM-content across different extracts leads to irreproducible biological activity. Whilst studies have demonstrated the anthelminitic effects of individual PSMs and/or plant extracts, the use of PSM-rich extracts is still understudied. There are insufficient reports on the effect on biological activity of combinations of PSMs or the contributions of individual PSM. Repeatable production of extracts (and thus consistent biological activity) requires a more detailed understanding of both the chemistry contained within PSM-extracts and the biological interactions of the active compounds in PSM-extracts with the parasites. Tree bark is particularly rich in antiparasitic PSM and it is very likely that the UK forestry industry creates enough bark waste to treat the UK livestock population, so long as the PSM-extract is administered at key times of parasite susceptibility. This project therefore brings together the forestry, livestock and bioprocessing industries with academic experts in parasitology, chemical biology, analytical and statistical analysis to understand the full extent of the interaction of the parasites with the tree bark extracts. In doing so, it will identify, and isolate compounds present in the bark extracts that demonstrate anthelmintic activity. This will enable the creation of an "Activity Index" - a tool to predict the anthelmintic activity of any future bark extract. This Activity Index will subsequently guide the characterisation of future large scale bark extracts, predicting their anthelmintic potential and optimise their inclusion in parasite control strategies. To achieve this, we will identify and test compounds for their presence in bark extracts and their anthelmintic activity. We will select potentially bioactive compounds on literature reports, preliminary evidence already available to us from previous work and novel work described in this proposal.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/W005050/1
    Funder Contribution: 6,486,350 GBP

    Agriculture is a major cause of greenhouse gas (GHG) emissions, pollution and biodiversity loss globally and in the UK. Achieving sustainable ('green') growth of agricultural production to feed 10 billion people by 2050 whilst reducing environmental impacts is one of the greatest challenges facing humanity. Changing our diets and reducing food waste are part of the solution. However, as recognised in the UK government's Clean Growth Grand Challenge, significant green growth in the agri-food sector is also necessary to meet this demand without compromising other targets, in particular that of neutrality in carbon emissions by 2050. The GREEN AG programme will build a long-term, strategic research and innovation infrastructure to develop new UK farming systems which will produce sufficient food whilst reducing emissions and pollution, protecting biodiversity, and enhancing soil health. We call this 'net zero+' as it will balance net zero emissions aims with wider environmental concerns. These solutions will be required at scale if the UK is to meet emission reduction targets, and avoid the unintended consequences of emissions being offshored by increased food imports, or causing damage to valuable ecosystems in the UK. GREEN AG will engage and unite the science community with industry, policy, farmer and NGO stakeholders. We will identify farm management practices with potential to reduce emissions and/or capture carbon without major impacts on food production or other environmental outcomes. We will undertake detailed, integrated measurements of these practices on both experiments and on a network of instrumented study farms (Living Farm Labs). We will use models to define pathways to achieving net zero+ arable and livestock farm systems that minimise trade-offs with production and the environment. Finally, we will use cutting edge data science to provide data, models and tools to enable the transition to net zero+ agriculture. Achieving the ambition of clean, green and net-zero agriculture will require strategic, cross-disciplinary and long-term research - a so-called national capability. This will bring together directed teams from NERC and BBSRC centres - UK Centre for Ecology & Hydrology, Rothamsted Research, National Centre for Earth Observation, British Geological Survey and Plymouth Marine Laboratory. This partnership will bring together complementary expertise in ground and earth observation, sensor networks, measurement of GHG emissions from soils, groundwater and estuaries, pollution, biodiversity, crop and livestock production, data science and modelling from field to national scales, covering terrestrial, freshwater and coastal zones. Our environmental research will complement work on other aspects of the farming system that might support net zero+, including crop breeding, animal husbandry and diet, soil science, and crop nutrition and protection. The GREEN AG national capability will provide the following outcomes for the UK science community and other stakeholders: - New knowledge underpinning effective agri-environmental policies to achieve net zero emissions by 2050; - New funding opportunities levered from the GREEN AG research and innovation infrastructure which comprise a national digital farmland observatory, instrumented study farms, experiments, data and models; - More effective implementation of net zero+ polices and practice through stakeholder engagement and co-design, and through the provision of new decision support tools; - Opportunities for UK researchers and agri-businesses to export this green growth knowledge, technology and innovations to overseas markets.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.