Powered by OpenAIRE graph
Found an issue? Give us feedback

Affinity Water

Affinity Water

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/R014752/1
    Funder Contribution: 255,253 GBP

    Groundwater turbidity above the drinking water limit is a common problem in groundwater supply boreholes that abstract from fractured aquifer systems, such as the Chalk in South East England. Strategies for managing such high turbidity events include blending or filtering the water or temporarily shutting down affected wells or borehole isolating borehole sections, which costs water companies and their customers several 10th of Millions of Pounds every year. While the source of turbidity can vary, the occurrence of turbidity spikes is usually associated with fast groundwater flows through fractures following prolonged rainfall or intensive storm events. The occurrence of such high turbidity events can currently not be predicted, posing a severe financial risk to water companies and limiting the reliability of the available groundwater resource. This project aims to develop an in-borehole monitoring system for continuously observing fracture inflows in boreholes and assessing their linkage to turbidity events. The system is based on Active Distributed Temperature Sensing (A-DTS) technology which uses fibre-optic cables installed in boreholes to continuously monitor the temperature changes within boreholes under ambient temperature conditions and in response to heat pulses, induced by heating a metal core within the cable. The project will therefore: 1. Demonstrate the suitability of A-DTS technology for quantifying in-situ fracture flow to groundwater boreholes. This will include testing different technological setups and monitoring strategies across a range of conditions and validating A-DTS technology against the results of traditional non-continuous borehole characterisation methods. 2. Develop a continuous A-DTS based early warning system of changes in fracture flow and turbidity. Therefore, in long-term (12 month) continuous monitoring of fracture flows additionally turbidity and electrical conductivity (EC) at different depths within the borehole will be monitored. 3. Identify Risk Zones for Borehole Turbidity by developing and applying numerical modelling tools to simulate groundwater (and suspended particles) flow through the subsurface under variable operational and meteorological conditions. This will allow the delineation of the most likely water and particle pathways and the mapping of risk zones that are most likely to deliver particles, and hence turbidity, to the investigated boreholes. The outputs of this study will directly benefit water companies by providing novel tools for identifying and characterising turbidity risk zones within and around existing supply borehole infrastructure. This will inform the design and implementation of risk amelioration measures and will also influence decision on locations, design and operation of new groundwater supply boreholes. The continuous A-DTS monitoring system will provide early warning of imminent turbidity events, providing water companies with an opportunity to adjust operation of their infrastructure prior to the event and thereby reducing the overall impact on their operational and supply infrastructure, hence saving costs for the operators as well as their customers. Modelling tools developed in this project will support the delineation of risk zones for groundwater contamination and thus, not only impact on the management of water resource infrastructure but also on surface infrastructure design, management and operations. Furthermore, the technology also has potential applications in the assessment of salinisation risks (e.g. by identifying and delineating risk zones within and around supply boreholes) as well as for detecting possible impacts of hydraulic fracturing operations on the groundwater flow regime (e.g. through identification of flow regime changes/ new fractures within existing boreholes). Keywords: turbidity, risk, groundwater supply, A-DTS, monitoring, early warning system, water industry, customers, fractured aquifers

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M021939/1
    Funder Contribution: 85,589 GBP

    Groundwater is a hugely important natural resource, providing the majority of drinking water globally, some 35% of drinking water in the UK, and up to 80% in southern England. High frequency real-time systems are now widely used in water industry for water quality monitoring, however transient microbiological contamination is currently still monitored using traditional spot sampling and culturing techniques. The highly dynamic nature of microbiological contamination necessitates high frequency on-line monitoring for the optimisation of down-stream processes such as treatment and distribution. We propose to pilot and embed within the UK water industry the use of new fluorescence sensors to enable this. In addition, while it is generally understood that high levels of faecal contamination in groundwater may be accompanied by relatively high turbidity, this is often not the case, and depends on the source and pathway of faecal contamination in the subsurface. Differentiation of turbidity derived from aquifer material or induced by pumping and that derived from microbial contaminants has significant potential benefits to the water industry through treatment process optimisation. Water companies in England and Wales have invested £42 million on investigations into source water characterisation and treatment process optimisation from 2010 - 2015 (OFWAT 2009) but understanding transient microbial contamination remains a significant challenge. Recent NERC funded research on in-situ fluorescence spectroscopy, now a well-established technology, offers a highly sensitive method to achieve this for raw groundwater sources. Through a partner led process we have developed a proposal to pilot, embed and develop an implementation strategy for this technology that is relevant for the UK water industry, but is also highly relevant for international water and health sector organisations. As part of this proposal, placement activities within two UK water companies (Affinity Water and Wessex Water) will be carried out to i) pilot and embed the use of tryptophan sensor technology in the UK water industry for improved monitoring of microbiological contamination in vulnerable groundwater sources, ii) provide robust evidence on the suitability of the current turbidity trigger (1NTU) for groundwater quality assessments, iii) provide an implementation strategy for this technology within the UK water sector through user-led collaboration. This will be carried out though visits to all UK water companies to obtain feedback on how this could benefit and be implemented in different parts of the water sector and disseminate findings with potential new end users. Working with key partners from across the UK water industry, including water companies (Affinity Water and Wessex Water) and cross-sector organisations (UKWIR, Water UK and DWI), TryGGER aims to embed within the UK water sector the use of on-line sensors for monitoring dynamic microbiological contamination in groundwater sources for improved use of water resources and optimisation of treatment processes. The application of this sensor technology will be piloted in four case study sites in the UK, through placement activities undertaken by BGS scientist in water industry partners. These have been selected in consultation with water utilities to be representative of vulnerable groundwater settings, with wide applicability both within the UK context and globally. Importantly, a strategy for implementing the use of these sensors for raw water quality monitoring will be developed with end users from across the UK water industry as part of this proposal to enhance wider uptake of this technology. This proposal has the potential for far reaching impact in the UK water industry and further afield. Involvement of the main players in the water industry, as well as utility firms, from early on during proposal development this has ensured that is highly relevant to the end-user community.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S003495/1
    Funder Contribution: 4,129,080 GBP

    London and the South-East is the economic 'powerhouse' of England contributing 40% of GDP. Currently there is a shortage of housing, particularly affordable homes, and 50,000 new homes per year are planned for London to 2036. The growing population of London and its planned housing require water to be supplied and flooding to be reduced as far as possible. However, the region is vulnerable to water shortages (droughts) and floods. In the spring of 2012 London was facing potentially its worst drought, with concerns whether Affinity Water could provide sufficient water for some Olympic events. By contrast, the prolonged rainfall that then fell over the summer caused localised flooding and the Thames barrier being closed twice. This swing, over half a year, from extreme shortage of water to excess highlights the major challenge London faces to manage the water environment. This challenge is likely to worsen with climate change alongside the expected economic growth of London and associated increase in population. It also shows how droughts and flooding are two ends of a hydrological spectrum, whose political oversight, i.e. governance, needs to be managed was a whole. It is this need for integrated, collaborative and appropriate management that lies at the heart of CAMELLIA. Focusing on London, CAMELLIA will bring together environmental, engineering, urban planning and socio-economic experts with governmental and planning authorities, industry, developers and citizens to provide solutions that will enable required housing growth in London whilst sustainably managing water and environment in the city. CAMELLIA will be led by Imperial College London, working in collaboration with researchers at University College London, the University of Oxford, and the British Geological Survey. The programme is supported by communities, policymakers and industry including: local and national government, environmental regulators, water companies, housing associations and developers, environmental charities and trusts. Ultimately, the programme aims to transform collaborative water management to support the provision of lower cost and better performing water infrastructure in the context of significant housing development, whilst improving people's local environments and their quality of life. The relationships between the natural environment and urban water infrastructure are highly complex, comprised of ecological, hydrological, economic, technical, political and social elements. It is vital that policy and management are informed by the latest scientific understanding of hydrological and ecological systems. However, for this knowledge to make a change and have an impact, it needs to be positioned within wider socio-technical and economic systems. CAMELLIA will provide a systems framework to translate Natural Environmental Research Council-funded science into decision-making. Enabling a range of organisations and people to contribute to, and apply systems-thinking and co-designed tools to create a paradigm shift in integrated water management and governance underpins CAMELLIA. This will achieve the goal of real stakeholder engagement in water management decisions and provide a template, not just for London's growth, but for other cities, regions and communities both nationally and globally. The proposed work programme consists of four work packages which address 4 key questions, namely: How to understand the system?; How to model the integrated system?; How to analyse that system?; How to apply this systems approach to create impact? To help focus these questions, four London based case studies are being used, each reflecting a key issue: Southwark (urban renewal); Thamesmead (housing development); Mogden (water infrastructure regeneration); Enfield (Flood risk and water quality). From these, an integrated systems model will be applied to the entire city in order to help guide policy, planning and water management decisions.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N010124/1
    Funder Contribution: 3,962,860 GBP

    Water for all is the aim of this consortium. The UK water sector faces grand challenges over the coming decades: increasing population, ageing infrastructure, and the need to better protect the natural environment all under conditions of uncertain climate change. The application of traditional technology-based solutions alone is not the way forward. We propose the use of 'tailored solutions' to address these challenges by combining measures to suit specific circumstances and constraints to achieve flexible and adaptive water systems. The project will undertake research in 8 technical themes, each of which individually pose disruptive questions, demonstrate the potential for, and lead transformation. However, they will not be viewed in isolation. When considered in combination, taking a systems view, they can be combined as 'silver baskets' of broader tailored solutions able to work synergistically for existing and new infrastructure in order to achieve transformative impact. Tailoring water solutions does not mean lower quality water services for different sectors in society; rather, it means fair, bespoke solutions appropriate to variations in the natural environment, population distribution, and legacy infrastructure. In this way the project will address the needs of water for all. Our consortium is built around a core based on the Pennine Water Group (PWG) which has been supported continuously by three EPSRC platform grants since 2001. The PWG's strength and international reputation is founded on a balance of fundamental and applied research via a multi-disciplinary approach focusing on urban water asset management. This consortium broadens the PWG to include new expertise to provide tailored water solutions for positive impact. At Sheffield, this will include new collaborations with experts in energy systems, robotics, automation, and management. Externally, the consortium includes internationally-leading experts from Exeter for household and community scale water efficiency, Imperial College for treatment and emerging contaminants, Manchester for social practices, Newcastle for climate change impacts, risk modelling and cities/infrastructure integration, and Reading for catchment processes. All members bring wide international collaborative networks that will link with the scientific and engineering research needed to deliver the silver baskets of tailored solutions. To achieve the envisioned transformation requires time and a step change in the way in which the UK water sector identifies, develops and applies innovation. Stakeholders need to move out of traditional silos and collaborate to creatively co-produce knowledge and action. Academics, scientists and engineers must work across disciplines and stages in the knowledge production process to deliver the complex socio-technical solutions needed to meet the challenges facing the UK water sector. Collaboration is especially relevant in a sector that is not accustomed to working together and does not have a shared vision of how to meet its grand challenges. A unique feature of this consortium is the development of the Hub that will revolutionise the way innovation is delivered to the UK water sector. The Hub aims to provide transformative leadership and accelerate and support innovation through partnerships for the co-production of knowledge across the water sector. Underpinned by world class science and engineering research the Hub will facilitate the development and communication of a shared visionary roadmap for the UK water sector, stimulate and demonstrate new tailored approaches to address the grand challenges, create a process for selecting potentially transformative tailored socio-technical solutions in line with the roadmap and enable the accelerated generation of collaborative, responsible innovation across the UK water sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/R004668/1
    Funder Contribution: 1,495,780 GBP

    LANDMARK (LAND MAnagement for flood RisK reduction in lowland catchments) will evaluate the effectiveness of realistic and scalable land-based NFM measures to reduce the risk from flooding from surface runoff, rivers and groundwater in groundwater-fed lowland catchments. We will study measures like crop choice, tillage practices and tree planting, that have been identified by people who own and manage land, to have the greatest realisable potential. NFM measures will be evaluated for their ability to increase infiltration, evaporative losses and/or below-ground water storage, thereby helping to store precipitation to reduce surface runoff and slow down the movement of water to reduce peak levels in groundwater and rivers. However, we need to carefully examine the balance between increased infiltration, soil water storage and evaporative losses under different types of NFM measures, because long-term increases in infiltration could actually increase groundwater and river flood risk if there is less capacity within the ground and in rivers to store excess precipitation from storm events. Also, following a review of the available research to date, other researchers (Dadson et al, 2017) came to the conclusion that land-based NFM measures would only provide effective protection against small flood events in small catchments. As the catchment size and flood events increase, the effectiveness of land-based NFM measures in reducing flood risk would decrease significantly. However, this idea needs to be tested further. Currently, there are many unanswered gaps in knowledge that make it hard to include land-based NFM measures in flood risk mitigation schemes. The Environment Agency tell us that there are no case studies on land-based NFM measures to support decision making, with most focusing on leaky barriers made from trees. Yet, land-based NFM measures have potential to do more than just reduce flood risk, including improving water quality, biodiversity and sustainable food and fibre production. So in LANDMARK, we will carry out research to help to fill this evidence gap, and test the ideas Dadson et al. proposed about land-based NFM using the West Thames River Basin as a case-study area. We will work at three spatial scales (field, catchment and large river basin) and explore modelling scenarios, developed with people who own and manage land and live at risk of flooding, to look at how land-based NFM could affect flooding. Scenarios will include experiences in the recent past in July 2007 and over the winter of 2013-14, and how future land use and management could affect flood risk in 2050 as the climate changes. We will consider how government policy could change after we leave the EU to support land-based NFM. Work will be carried out in five stages: (1) we will bring together available maps, data and local knowledge on current land use and management, and use this to create scenarios for modelling experiments to explore land use and management measures impact on events from the past and in the future; (2) we will make measurements to see how below-ground water storage and infiltration vary between different land-based NFM in fields where innovative land management is being practiced; (3) we will collect data from sensors sitting above the ground, flying on drones and on satellites to see how vegetation and soil moisture vary across large catchment areas; (4) we will use all the data collected from 1-3 to run modelling experiments across a range of scales, linking together models that capture soil and vegetation processes, overland and groundwater flows and catchment hydrology, exploring variation in model outputs; and (5) we will create web applications to display and explore the outputs from the modelling experiments. All this work will be supported by workshops, field visits, reports and resources to support people and their learning about how land-based NFM measures work and could be used to reduce flood risk.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.