Powered by OpenAIRE graph
Found an issue? Give us feedback

EESY-INNOVATION GMBH

Country: Germany

EESY-INNOVATION GMBH

6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 876925
    Overall Budget: 40,584,500 EURFunder Contribution: 11,846,200 EUR

    The fundamental goal of the ANDANTE project is to leverage innovative hardware platforms to build strong hardware / software platforms for artificial neural networks (ANN) and spiking neural networks (SNN) as a basis for future products in the Edge IoT domain, combining extreme power efficiency with robust neuromorphic computing capabilities and demonstrate them in key application areas. The main objective of ANDANTE is to build and expand the European eco-system around the definition, development, production and application of neuromorphic hardware through an efficient cross-fertilization between major European foundries, chip design, system houses, application companies and research partners, as presented by the European Leader Group (ELG). The project brings together world class expertise to bring the world class expertise and infrastructures of Imec, CEA and FhG together with semiconductor companies, fabless, system houses, SMEs and application experts to explore and demonstrate the capabilities provided by the developed technologies. In the project, several applications will be assessed in key domains where Europe is strong (automotive, digital farming, digital industry, mobility and digital life). The aim is to reinforce and maintain strong leadership in these areas by bringing industry in contact with future memory technologies at a low TRL level (MRAM, OXRAM, FeFET). These cross-disciplinary efforts will lead to development of innovative hardware / software deep learning solutions, based on high TRL level RRAM/PCM and FeFET, to enable future products which combine extreme power efficiency with robust cognitive computing capabilities. This new kind of computing technology, combining ANN and SNN capabilities, will open new perspectives, for instance, environmental monitoring, and wearable electronics.

    more_vert
  • Funder: European Commission Project Code: 101112286
    Overall Budget: 24,518,300 EURFunder Contribution: 7,757,730 EUR

    In LoLiPoP IoT innovative Long Life Power Platforms will be developed to enable retrofitting of wireless sensor network (WSN) modules in IoT applications. This includes the development of algorithms to perform FUNCTIONALITIES like asset tracking and condition monitoring (for predictive maintenance). They can be used in APPLICATIONS such as industry 4.0, smart mobility and energy efficient buildings. LoLiPoP IoT creates an ecosystem of developers, integrators and users to develop these platforms thinking about power/battery life, ease of installation and maintenance. The project is driven by 12 laboratory- and field-based use cases to initially demonstrate their technical viability and then potential impact. Expected impacts from the LoLiPoP IoT use cases include; a) typical battery life increase from ~18 months to >5 years, b) Reduced maintenance overhead of mobile and fixed assets from >30% to 10% in production time, cycle time and inventory costs, e) Improved comfort levels and well-being of building occupants whilst reducing energy footprint by >20% and f) Revenues of >€10M PA for LoLiPoP IoT industry partners offering asset tracking & condition monitoring services. All of this is achieved by developing and integrating: a) Multi-source Energy Harvesting solutions (vibrational and photovoltaic transducers, PMICs and discrete circuits), b) Digital interfacing to contextually adapt mode settings of WSN devices and connected systems to minimise power drain, c) Ultra low power components for WSN, d) Innovative Architectures for wireless data collection that minimize battery power drain, e) Simulation Models to optimise component design and integration and f) embedded AI/ML in IoT devices, for lower latency and power consumption and higher robustness.

    more_vert
  • Funder: European Commission Project Code: 101140087
    Overall Budget: 31,999,700 EURFunder Contribution: 9,692,780 EUR

    SMARTY invokes a cloud-edge continuum, made from heterogeneous systems, that protects data-in-transit and data-in-process in order to offer a trustful fabric to run AI processes. The securitization occurs by employing novel accelerators for quantum resilient communications, confidential computing, software defined perimeters and swarm formation, offering multiple layers of security. Semantic programmability and graph-management open the door to drag-and-drop approaches in deploying services in a fast and reliable manner. SMARTY is proposed within the context of different key sectors in Europe : automotive, fintech, telco and industrial settings; the technology proposed in SMARTY will be matured within the lifetime of the project and tested through five use cases. SMARTY is supported by large European industry players and well as by 13 SMEs which will seek a visible platform to develop their products and gain visibility towards high-growth. SMARTY’s major suppliers and OEMs and reputable academic partners provide a great opportunity for these 13 SMEs to mature their technologies in a challenging but safe environment. The results of SMARTY are applicable to different vertical sectors and can be transported to different use cases. Strong synergies with existing efforts in the area of edge computing, European processors and trustworthy AI are envisioned and planned within SMARTY.

    more_vert
  • Funder: European Commission Project Code: 101139996
    Overall Budget: 33,956,400 EURFunder Contribution: 10,016,600 EUR

    ShapeFuture will drive innovation in fundamental Electronic Components and Systems (ECS) that are essential for robust, powerful, fail-operational and integrated perception, cognition, AI-enabled decision making, resilient automation and computing, as well as communications, for highly automated vehicles. Its overarching vision is to bring ECS Innovation at the Heart of Europe's Mobility Transformation, thereby elevating Sovereignty by Perfecting Programmable ECS Solutions for Intelligent, Safe, Connected, and Highly Automated Vehicles. The project will result in the following main tangible outcomes: • Safety, security and reliability of in-vehicle systems to levels appropriate for mass-market deployment. • Availability and supply of leading-edge ECS for the European automotive supply chain and for OEMs to be at the forefront of technology developments in the 2030s. • Increased Accuracy and Robustness of ECS for perception with smaller form factors and lower power consumption. • ECS attributed with cognition features and improved human-Machine Interface (HMI). • ECS with cognitive processing and decision-making capabilities. • ECS for resilient automation and communications. • Increased technology acceptance that will also lead to business sovereignty safeguard. 15 demonstrators and 2 impact studies will showcase the project’s achievements and their capability to deliver innovations and secure future application advances in core markets for European society – Mobility, Green Deal, Digital Society, Safety and Industry. The project innovations will leverage the expertise of world-renowned industrial (5 OEMs, 24 Tier-1, Tier-2 and technology providers) and 12 research partners along the complete automotive and semiconductor value chains, providing Europe with a competitive edge in a growing market. Importantly, ShapeFuture will contribute to ensuring European ECS Sovereignty by shaping the future of ECS in mobility.

    more_vert
  • Funder: European Commission Project Code: 101112109
    Overall Budget: 29,985,100 EURFunder Contribution: 9,079,810 EUR

    The EU requires also electronics industry to achieve the ambitious goals of the EU Green Deal, Circular Economy Action Plan and Industrial Strategy for reduction of energy and material consumption, and utilization of circular value chains. Sustronics project is targeting to improve capabilities of European electronics industry to meet these goals and develop new business opportunities from sustainable and greener electronics combined with increase in productivity and new functionalities. The current electronic industry poses significant environmental impacts, such as increasing amount of e-waste, great demand for critical raw materials, and high energy consumption during manufacturing. Electronics industry can specifically decrease its environmental burden by shifting from fossil-based materials to bio-based materials, decreasing use of metals, utilizing additive manufacturing processes, and developing miniaturized and integrated components, but also in broader scope by utilizing efficient circular economy business models that enable reuse, recycle and repair of critical materials and components. Sustronics main goal is to support renewal of European electronics industry towards circular economy, eco-design, bio-based materials, and material- and energy-efficient manufacturing processes. Thereby, Sustronics will re-design electronics products into circular, compostable and reusable products, and demonstrate that there are business opportunities in sustainable electronics. Quantification of environmental impact, definition of business models, involvement of external stakeholders, and means to guarantee compatibility with policies and standards will guide the project implementation. The pilots will focus on healthcare, diagnostics, and industrial sectors, including topics such as medical and personal health devices, single-use and wearable diagnostics, sustainable lighting solutions and embedded electronics for automotive.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.