Powered by OpenAIRE graph
Found an issue? Give us feedback

Nokia Research Centre (UK)

Nokia Research Centre (UK)

19 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/G041954/1
    Funder Contribution: 308,718 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G042357/1
    Funder Contribution: 341,210 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G041482/1
    Funder Contribution: 632,819 GBP

    Graphene (a single atomic layer of graphite) first experimentally isolated and identified only four years ago, is rapidly revealing its great potential as an important material for future electronic devices. In order to progress towards realistic device applications of graphene, it is important to address the issues which will affect the operation of graphene in real circuits, where high currents will lead to overheating and non-equilibrium charge carrier distributions. The proposed joint project will launch an internationally leading programme involving three research groups which are already well established in graphene research and have expertise in complimentary areas. By combining fabrication technology of graphene-based devices, transport and optical studies, and theoretical modelling, we will investigate the kinetic properties of charge carriers and phonons (lattice vibrations) in graphene over a broad range of operating voltages, temperatures and optical intensities, with the aim to establish and improve the operating characteristics of graphene-based electronic and optoelectronic devices.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I035935/1
    Funder Contribution: 611,618 GBP

    Quantum information science has the potential to revolutionise information and communications technologies (ICT) in the 21st century via secure communication, precision measurement, and ultra-powerful simulation and ultimately computation. Photonics is destined for a central role - the photon is an ideal quantum bit, or 'qubit', for encoding, processing, and transmitting quantum information. However, real-world applications require integrated photonic devices, incorporating photon sources, detectors and circuits. Just as the invention of the silicon integrated circuit turned the tremendous potential of the transistor into reality, this project aims to develop all necessary components to the high levels of performance and integration required to realise quantum photonic technologies. This project will be the first to simultaneously address all components and their integration simultaneously. It will thereby overcome the major challenges to realising the tremendous potential of future quantum technologies. A key challenge in the development and application of our approach is to integrate waveguide circuits with active components: single-photon sources, phase- and amplitude-modulators and high-efficiency single-photon detectors. Our initial benchmarking and characterisation results have identified lithium niobate (LN) as the perfect material system in which to realise all of these components and thereby to create a new paradigm for integrated quantum photonics. The goals of this proposal are to fabricate all of the key devices in the LN material system and to integrate them to realise the first prototype systems. Telecom wavelength operation will enable interfacing with existing telecom systems (existing fibre optic networks for example) and the adoption of powerful telecom technologies (modulators, wavelength division multiplexing, arrayed waveguide gratings, etc.). The devices and systems developed in this programme will revolutionise approaches to photonic quantum technologies, paving the way to practical applications. This project brings together all of the essential expertise required to achieve these ambitious goals in world-leading groups in quantum photonic technologies and LN device fabrication (Bristol), superconducting single-photon detectors (Heriot-Watt), and superconducting thin film growth and nanofabrication (Cambridge). This proposal builds on successful work within and between these groups and has substantial support from our exisiting industrial partners (The UK National Physical Laboratory, Nokia and Quantum Technology Research Ltd.). Over the last several years the applicants have already made great strides towards integrated quantum photonic technologies, developing waveguide-on-chip quantum photonic circuits, combined with practical superconducting single photon detectors, and non-linear photon sources. This research proposal is extremely timely in addressing a critical bottleneck in the development of optical quantum information technologies: a single material system that can support all of the required components and their integration. Our research programme will provide a launching pad to a new generation of compact, high performance quantum photonic devices operating at telecom wavelengths. We adopt a highly novel and ambitious approach in migrating from silica-on-silicon waveguide circuits to LN waveguide circuits. This will enable us to integrate periodically poled lithium niobate (PPLN) photon sources, rapidly reconfigurable waveguide circuits and high performance superconducting single-photon detectors together for the first time, and to achieve high performance operation at telecom wavelengths. This approach promises a new technology platform for realising secure communication networks, precision measurement systems, simulation of important physical, chemical and biological systems, including new materials and pharmaceuticals, and ultimately ultra-powerful computers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H027130/1
    Funder Contribution: 99,049 GBP

    For the past 5 years our team has been developing plastic films incorporating polymer nanoparticles that when correctly processed show structural colour. Most coloured materials depend on pigments that selectively absorb particular colours, and these are frequently toxic and fade over time. Creating colours that can change on demand is currently impractical for most markets. The materials that we create produce colours based exclusively on the nanoscale spacing of transparent components, and actively change colour if stretched or swelled. The prospect is thus for a materials-based company selling suitably-tailored coloured films into a variety of markets.Our aim is thus to formulate and develop the business case for a spin-out company based on elastomeric polymer opals which use our novel manufacturable nanotechnology.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.