
XENNIA TECHNOLOGY LIMITED
XENNIA TECHNOLOGY LIMITED
Funder
7 Projects, page 1 of 2
assignment_turned_in Project2011 - 2015Partners:[no title available], Polysolar Ltd, XENNIA TECHNOLOGY LIMITED, Polysolar (United Kingdom), University of Sheffield +2 partners[no title available],Polysolar Ltd,XENNIA TECHNOLOGY LIMITED,Polysolar (United Kingdom),University of Sheffield,University of Sheffield,Xennia Technology (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I028641/1Funder Contribution: 967,004 GBPThe harvesting of sunlight has the potential to revolutionize the way mankind generates electricity. At present however, only a small fraction (0.02% in 2008) of the world's total electrical power is generated using sunlight. Photovoltaic (PV) installations based on crystalline silicon are an increasingly popular way of generating electricity from solar-radiation, however such installations suffer from a relatively long pay-back time resulting from their high cost of manufacture. There is thus growing interest in the development photovoltaics based on organic (polymeric) materials (OPV) that can in principle be produced at low-cost, over very large areas utilizing solution-based processes that do not require a large energy input. At present however, even the best lab-based OPVs have an efficiency that is significantly lower than that of standard crystalline silicon (~8% compared with ~18%), coupled with a relatively short operational lifetime - attributes that have partly precluded their commercialization. There is nevertheless great interest in exploring the scale-up of OPVs, despite the fact that no common consensus has been reached on the best route to deposit multilayer architectures at high-speed. This problem is compounded by the fact that many of the materials that have the highest efficiency in OPV devices often have rather low solubility; properties that limit their application in high-speed manufacture processes. Addressing these issues lies at the heart of our proposed research. Firstly, we will engineer the chemical structure of state-of-the-art low energy-gap donor polymers to significantly improve their solubility and processability. We will then explore the deposition of such materials into OPVs using spray-based techniques. The thin-films formed will be characterized using high-resolution electron microscopy together with X-ray and neutron-scattering. The project team we have assembled for this task have leading expertise in organic-electronics, polymer-synthesis, polymer-physics and practical manufacturing processes. Our project is significantly strengthened by funds from the European Regional Development Fund (Project Mercury) to purchase an automated aerosol deposition system and fund postdoctoral and postgraduate researchers. We have ready route for commercialization via our (unfunded) links with a TSB-funded project that intends to develop OPVs for transparent window-glass applications. We anticipate the outcome of our work will be a materials set and a scalable process for high speed OPV manufacture.We will gain impact for our work through showcasing scaled-up OPV devices at the Sheffield Solar Farm and by interacting with artists and designers who wish to use organic photovoltaics in their work. We will also gain valuable support and publicity for our work through 'Project Sunshine'; a flagship project at Sheffield that promotes research into the utilization of solar energy to solve problems related to mankind's growing energy-needs and food-production in a time of growing climate uncertainty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d2b02a3d53545fdaa40cf88582d0f8c5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d2b02a3d53545fdaa40cf88582d0f8c5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2015Partners:Xennia Technology (United Kingdom), Polysolar Ltd, UNIVERSITY OF CAMBRIDGE, XENNIA TECHNOLOGY LIMITED, University of Cambridge +2 partnersXennia Technology (United Kingdom),Polysolar Ltd,UNIVERSITY OF CAMBRIDGE,XENNIA TECHNOLOGY LIMITED,University of Cambridge,University of Cambridge,Polysolar (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I029257/1Funder Contribution: 238,616 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::697ae3426cd1c1d91ed196dd654a018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::697ae3426cd1c1d91ed196dd654a018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2013Partners:MANZ CIGS TECHNOLOGY GMBH, ZSW , FLISOM, XENNIA TECHNOLOGY LIMITED, Chemnitz University of Technology +3 partnersMANZ CIGS TECHNOLOGY GMBH,ZSW ,FLISOM,XENNIA TECHNOLOGY LIMITED,Chemnitz University of Technology,EMPA,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,UMICOREFunder: European Commission Project Code: 228743All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::27ff2858bd21a11fc1b0ea25317c7c53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::27ff2858bd21a11fc1b0ea25317c7c53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Institut Pasteur, INRAE, LENS, University of Florence, DCU +3 partnersInstitut Pasteur,INRAE,LENS,University of Florence,DCU,XENNIA TECHNOLOGY LIMITED,URATIM,HOSPITEX DIAGNOSTICS SRLFunder: European Commission Project Code: 211383All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::3dd12b0e9605ade1829fdee25a881fcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::3dd12b0e9605ade1829fdee25a881fcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2013Partners:HUJI, Agfa-Gevaert (Belgium), SMT DD, TNO, XENNIA TECHNOLOGY LIMITED +6 partnersHUJI,Agfa-Gevaert (Belgium),SMT DD,TNO,XENNIA TECHNOLOGY LIMITED,SMT DD,FHG,FSU,Imperial,Philips GmbH,ECNFunder: European Commission Project Code: 248816All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::c4b0fb640c91d6e457845f12290f3c90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::c4b0fb640c91d6e457845f12290f3c90&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right