
BIOFOS
BIOFOS
2 Projects, page 1 of 1
Open Access Mandate for Publications assignment_turned_in Project2015 - 2018Partners:FHG, Atemis GmbH, TUW, UBA, BWB +10 partnersFHG,Atemis GmbH,TUW,UBA,BWB,Electrochaea.dk,APS,Arctik,BIOFOS,EAWAG,KWB,Neas Energy A/S,SUSTEC,VEOLIA DEUTSCHLAND GMBH,AnoxKaldnes ABFunder: European Commission Project Code: 641661Overall Budget: 5,173,860 EURFunder Contribution: 3,997,130 EURThe municipal wastewater in Europe contains a potential chemical energy of 87,500 GWh per year in its organic fraction, which is equivalent to the output of 12 large power stations. Due to the currently applied technologies and related energy loss at each process step, wastewater treatment in Europe today consumes instead the equivalent of more than 2 power stations. Many operators are thus targeting incremental energy efficiency towards energy neutrality, but recent studies have shown that with novel process schemes using existing technologies, sewage treatment plants could actually become a new source of renewable energy, without compromising the treatment performance. The project POWERSTEP aims at demonstrating such innovative concepts in first full scale references for each essential process step in order to design energy positive wastewater treatment plants with currently available technologies. The following processes will be demonstrated in 6 full-scale case studies located in 4 European countries: enhanced carbon extraction (pre-filtration), innovative nitrogen removal processes (advanced control, main-stream deammonification, duckweed reactor), power-to-gas (biogas upgrade) with smart grid approach, heat-to-power concepts (thermoelectric recovery in CHP unit, steam rankine cycle, heat storage concepts), and innovative process water treatment (nitritation, membrane ammonia stripping). These individual technology assessments will merge into integrative activities such as treatment scheme modelling and design, global energy and heat management, carbon footprinting, integrated design options, as well as extensive dissemination activities. POWERSTEP will demonstrate the novel concepts and design treatment schemes of wastewater treatment plants that will be net energy producers, paving the way towards large implementation of such approaches and quick market penetration and supporting the business plans of participating technology providers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8bd4ed7b338633b85f310800332bd136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8bd4ed7b338633b85f310800332bd136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:DHI, fluidion SAS, INRAE, Arctik, IPEK INTERNATIONAL GMBH +20 partnersDHI,fluidion SAS,INRAE,Arctik,IPEK INTERNATIONAL GMBH,ICRA,ISS,Marche Polytechnic University,STRANE,PARTNERS4URBANWATER,SOFIYSKA VODA,BWB,BIOFOS,SYNDICAT INTERDEPARTMENTAL POUR L'ASSAINISSEMENT DE L'AGGLOMERATION PARISIENNE,ICATALIST,KWB,GIDITEK,SINTEF AS,ADC,UNIMI,Sorbonne University,KANDO ENVIRONMENTAL SERVICES LTD,ECOLOGIC INSTITUT ge,CAP HOLDING SPA,VRAGMENTS GMBHFunder: European Commission Project Code: 820954Overall Budget: 5,897,780 EURFunder Contribution: 4,997,160 EURdigital-water.city’s (DWC) main goal is to boost the integrated management of waters systems in five major European urban and peri-urban areas, Berlin, Milan, Copenhagen, Paris and Sofia, by leveraging the potential of data and smart digital technologies. DWC will create linkages between the digital and the physical worlds by developing and demonstrating 18 advanced digital solutions to address current and future water-related challenges; namely the protection of human health, the increase of performance and return on investment of water infrastructures and the involvement of citizens in urban water management. Areas of application of DWC digital solutions range from groundwater management, sewer maintenance and operation, wastewater treatment and reuse to urban bathing water management. DWC combines cutting-edge digital technologies such as augmented reality, open source software, cloud computing, real-time sensors, artificial intelligence, predictive analytics and decision support systems. DWC integrates the development of digital solutions in a dedicated guiding protocol to cover the existing gaps regarding ICT governance, interoperability, ontology and cybersecurity. Ultimately, DWC will provide an interoperable free flow of information among stakeholders and across the water value chain. DWC will generate the necessary conditions for co-creation and open innovation by the establishment of Community of Practices aiming at integrating stakeholder knowledge, ensuring the transferability of the digital solutions in other European or international contexts, supporting knowledge transfer beyond DWC and creating durable binding between European cities. The large scale assessment and communication of the benefits provided by the digital solutions in five major cities will serve as lighthouse, raising the awareness of European cities for a necessary digital transformation, and opening new market opportunities for DWC partners and European providers of digital solutions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::04ce07e489e4aea5ee14d219b0969fff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::04ce07e489e4aea5ee14d219b0969fff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu