Powered by OpenAIRE graph
Found an issue? Give us feedback

National Center for Atmospheric Research

National Center for Atmospheric Research

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/Y005279/1
    Funder Contribution: 208,351 GBP

    The Atlantic Meridional Overturning Circulation (AMOC) is a crucial component of the climate system due to its role in heat and salt transports, as well as its role in transporting and storing carbon. Variability in the strength of AMOC has been linked to important climate impacts, for instance, the number of Atlantic Hurricanes, anomalous Sahel precipitation, and European weather. Therefore, improved predictions of the AMOC would have important societal benefits. Despite its importance, the predictability of the AMOC remains relatively unexplored on timescales from one season to 10 years ahead, and many uncertainties persist in our understanding of AMOC variability. For example, we are unsure of the relative importance of different processes in driving AMOC variability on different timescales and latitudes, nor how predictable they are in state-of-the-art forecasting systems. Recent studies have provided considerable evidence that the atmospheric circulation in the North Atlantic is much more predictable than previously thought on these timescales. However, the predicted signals are far too small (the so-called signal-to-noise paradox) and predictions need to be calibrated to provide credible forecasts of society relevant variables, such as surface temperature. Given that atmospheric circulation is a key driver of AMOC, then it follows that AMOC predictions on these timescales may also suffer from similar signal-to-noise issues. Furthermore, predictions of AMOC, and its climate impact, could be improved by extending the published statistical calibrations to the ocean circulation. ALPACA will utilise AMOC observations (RAPID and OSNAP) and observation-based AMOC reconstructions to assess the quality of current AMOC forecasts in state-of-the-art seasonal and decadal prediction systems. Furthermore, we will evaluate the processes that contribute to skill and assess their consistency across models. We will also use new simulations to better understand the relative roles of different processes in driving observed variability on different timescales, and we will leverage new large ensemble simulations to quantify the role of external forcing in driving AMOC variability and change. Finally, by exploiting this new understanding, we will determine whether seasonal-to-decadal predictions of AMOC and its climate impacts can be improved through physically-consistent statistical calibrations that reduce the signal-to-noise errors in predictions. ALPACA is a collaboration between the National Centre for Atmospheric Science at the University of Reading, The National Oceanography Centre Southampton, The University of Exeter, and the Met Office Hadley Centre from the U.K., and The National Center for Atmospheric Research and the University of Miami, from the U.S, and the Barcelona Supercomputing Center from Spain.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/Z000335/1
    Funder Contribution: 3,230,060 GBP

    Volatile organic compounds (VOCs) in the marine environment and the atmospheric oxidative capacity over the ocean are critical but poorly understood components of the Earth System. There are tens of thousands of different VOC species in air, and they react with the hydroxyl radical (OH) and determine the reactivity of the atmosphere - often referred to as the oxidative capacity (the ability for air to cleanse itself). The oxidative capacity is key for climate through OH oxidation of methane and for air quality (e.g. via formation of ozone). Yet ~1/4 of the observed total OH reactivity over the ocean remains unexplained. VOCs are also precursors to secondary organic aerosol (SOA), which have the potential to enable particle growth to cloud condensation nuclei (CCN). Over the ocean and far away from anthropogenic sources where aerosol concentrations are typically low, clouds are far more sensitive to changes in aerosol than over land, highlighting the essential need to understand marine VOCs. Yet to date, the number of intensive VOC studies over land outnumbers studies over the ocean by orders of magnitude. The ocean contains a vast number of VOCs. Beyond a few well-studied gases, the inventory of these sea-air emissions is in its infancy due to the paucity of measurements. Compared to recent observations, models consistently underpredict the marine atmospheric concentrations of many VOCs, the total oxidative capacity, and marine SOA, strongly suggesting poorly constrained or unidentified oceanic emissions of VOCs. The highly uncertain VOC fluxes take the forms of "known unknowns" and "unknown unknowns". For the known unknowns, some VOCs are thought to be produced by marine biota or by photochemistry in seawater, but their oceanic emissions are poorly quantified. For the unknown unknowns, there are VOC fluxes or production pathways that we currently have little clue about, including light- or ozone-driven production from the sea surface. The sources and cycling of SOA over the background ocean are also poorly understood. While sea spray tends to dominate marine aerosol mass, SOA can be an important source of submicron particles and affect the abundance of CCN and so cloud droplets. In this project, we will combine a) intensive and comprehensive field measurements using novel instrumentation, b) innovative laboratory studies of physicochemical/biological processes, and c) state-of-the- art modeling on multiple scales to paint an unprecedented, holistic picture of reactive carbon and OH cycling in the background marine atmosphere. Constrained by atmospheric observations of total OH reactivity and total organic carbon mass, we will substantially improve flux estimates of established VOCs, identify new VOC emission sources, and evaluate their atmospheric impact. The fundamental questions we will address are: 1) Which VOCs exchange between the ocean and the atmosphere and what are their fluxes? 2) What are the physicochemical/biological processes that determine these fluxes? 3) What are the impacts of these marine VOCs on oxidative capacity, aerosol, clouds, and climate? COCO-VOC will achieve a step-change in understanding of VOC and OH cycling in the background environment, thereby constraining the sensitivities of VOCs, aerosol, and the global atmospheric oxidative capacity to changes in anthropogenic and natural emissions. This work will enable more accurate predictions of chemistry and climate in the past, present, and future. The new understanding will also offer insight into potential natural climate feedback processes caused by climate- driven changes in ocean-atmosphere VOC fluxes.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/T013516/1
    Funder Contribution: 356,284 GBP

    The Subpolar North Atlantic (SNA), which is the region of the Atlantic Ocean between 45-65N latitude, is a highly variable region. Surface temperatures and surface salinity here have varied on a range of time-scales, but the changes are dominated by large and slow changes on decadal or longer timescales. This decadal timescale variability appears to form a key component of a larger climate mode, the Atlantic Multidecadal Variability, which has been linked to a broad range of important climate impacts, including rainfall in the North African and south Asian monsoons, floods and droughts over Europe and North America, and the number of hurricanes. The SNA is also one of the most predictable places on Earth at decadal timescales, which suggests the potential for improved predictions of regional climate and high-impact weather years ahead. However, the origins of this variability in the SNA, and the processes controlling its impacts, are far from fully understood. There is significant evidence to suggest that anomalous heat loss from the subpolar North Atlantic Ocean to the atmosphere can instigate a cascade of changes across the North Atlantic basin in both the ocean and atmosphere. For example, changes in the SNA can change the strength of the ocean circulation to the south, affect the northward transport of heat and freshwater in the North Atlantic, and subsequently affect the upper ocean temperatures and salinity across the whole North Atlantic basin, and into the Arctic. Changes in the subpolar North Atlantic surface temperature are also thought to affect the atmospheric circulation - i.e. wind patterns - in both summer and winter. However, observational records are very short, and so there are significant problems with understanding causality, and considerable uncertainty about how well many of the important processes are represented in current climate models. WISHBONE will make use of new advanced climate simulations and forecast systems to make progress in understanding the impact of the subpolar North Atlantic on the wider North Atlantic basin. It will also test specific hypotheses related to understanding the specific role of heat loss over the subpolar North Atlantic in driving changes throughout the basin including the role of surface anomalies in driving wind patterns. WISHBONE is a collaboration between the National Centre for Atmospheric Science at the University of Reading, The National Oceanography Centre Southampton, The University of Oxford, and The University of Southampton from the U.K., and The National Center for Atmospheric Research, from the U.S.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/W000997/1
    Funder Contribution: 602,752 GBP

    Turbulence is the leading cause of weather-related aircraft incidents and the underlying cause of many people's fear of air travel. One estimate of turbulence indicates over 63,000 encounters with moderate-or-greater turbulence and 5000 encounters with severe-or-greater turbulence annually. In 34 years, the US reported 883 fatalities associated with turbulence. Turbulence can also damage aircraft, by tearing off winds and engines, as happened in an extreme turbulent event over Colorado in 1992. The economic costs of turbulence are more than just injuries and damage, with flight delays, inspections, repairs, and post-accident investigations also taking their toll. Estimates of the total cost to US carriers alone are nearly $200 million annually. Although the costs of turbulence to UK/EU airlines and over EU airspace are not available, assuming the occurrence of turbulence and the density of air travel are similar to that over the US and that the EU is about the same size as the US, then costs should be comparable. Moreover, climate change is exacerbating the problem. Midlatitude turbulence diagnosed from climate projections increase under increasing atmospheric carbon dioxide, with a doubling or trebling later this century. Thus, the costs of turbulence due to climate change will lead to a substantial increase in turbulent events. Clear-air turbulence, abbreviated as CAT, is turbulence that occurs away from clouds in clear air. CAT is difficult for pilots to detect and for forecasters to predict. One of the reasons that it is difficult to predict is that CAT is believed to have multiple sources and no single forecasting tool works for all of the sources. One suspected source of CAT is the release of hydrodynamic instability, an imbalance between different forces in the atmosphere that lead to large and rapid accelerations of the air. Such accelerations may produce atmospheric phenomena such as roll-type circulations or wave-like motions that result in CAT. Presently, we have an incomplete understanding of how hydrodynamic instability forms, releases, produces turbulence, and returns to stability. In this proposed research, we will look at observations of turbulence from three sources. One is from a vertically pointing radar in Wales that can detect turbulence at the jet stream. A second one is from pilots manually reporting turbulence. A third is from automated instrumentation aboard aircraft. We will use these observations to understand the conditions in which CAT forms and its relationship to hydrodynamic instability. Because these observations are snapshots in time from single measurements, computer model simulations of real and idealised weather phenomena that produce CAT will be critical to determine how the instability forms, how the instability and resulting turbulence evolves, and how the atmosphere returns to balance after the release of the instability. Within the context of the results from the observations, we will construct the life cycle of CAT from its origin, to its growth, to its demise. Given these new insights, we will develop tools for model output (called diagnostics) to quantify the impacts from the release of the instability and evaluate the performance of these diagnostics over North America, the North Atlantic Ocean, and Europe. In this way, improved understanding of the CAT life cycle will lead to better predictions of jet-stream turbulence, as well as reduced costs and injuries to passengers and flight crew.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.