Powered by OpenAIRE graph
Found an issue? Give us feedback

Equinor

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/W008718/1
    Funder Contribution: 754,398 GBP

    Climate change is a global challenge imposed by excessive emission of anthropogenic greenhouse gases to the atmosphere. It is estimated that CO2 is responsible for two-thirds of global challenge. To decelerate this global challenge, several inter-governmental agreements and legislation have been established to reduce the atmospheric CO2 effects (e.g. 2015 Paris agreement, 2019 UK NetZero) through a combination of various technological, societal and industrial actions. One of the key pathways to reduce CO2 atmospheric emission is carbon capture and storage (CCS). In CCS, CO2 is captured from anthropogenic sources and is injected into deep saline aquifers, depleted oil and gas reservoirs or other geological traps. Deep saline aquifers play an important role as their capacity for safe storage of CO2 is two orders of magnitude greater than depleted oil and gas reservoirs. Maintaining injection of CO2 into subsurface is a critical part determining the success of any CCS project, however, this is not always straightforward. Former studies show that with injection of dry super-critical CO2 in saline and hypersaline aquifers, salt forms in porous space and permeability decreases, leading to injectivity loss. Given this challenge it is essential to develop fundamental knowledge and a predictive model to establish know-how of injectivity loss under different thermodynamic conditions (pressure and temperature), hydrodynamic conditions (injection rate), and rock heterogeneity conditions, referred to as THR hereafter. The PINCH project aims to establish fundamental science to develop a novel predictive model and apply it to real field data supported by industries. PINCH brings together scientists from University of Manchester, Durham University, Princeton University, BP, Equinor, Shell to deliver project aims in five work packages (WP). WP1 addresses fundamental questions at pore scale to delineate impacts of THR conditions on salt formation and its aggregation regime under high-pressure high-temperature (HPHT) conditions. HPHT optical visualisation of micromodels and HPHT synchrotron-based X-ray imaging of micro-core flooding will be used to visualise the real-time change of pore morphology under different conditions. WP1 will deliver unique and valuable four-dimensional data sets to establish fundamental knowledge and to support WP3 data requirements. WP2 addresses similar research questions as WP1 in real rock materials at a larger physical scale (core). BGS will facilitate access to the rock materials required. Additionally, pressure injectivity and rock mechanical properties will be measured under different THR conditions. We will address the knowledge gaps in the role of these factors on the injectivity loss. This will assist development of predictive modelling as envisaged in WP3. WP3 is the core of PINCH project as a novel multiscale modelling approach is proposed. Pore-scale modelling will be developed to capture multiphase flow, phase change, salt formation. The model will be validated against the observations in WP1. Also a continuum-scale model will be developed which will incorporate the pore-scale modelling for parameterisation. The model will be validated against the experiments in WP2. WP4 will deliver a high-impact research all fundamental science established in WP1 and WP2 and the engineering tools developed in WP3 will be employed to address real-life laboratorial and field-scale challenge related to the injection of supercritical CO2 in hypersaline aquifers and subsequent injectivity loss. Three candidate CCS fields are Endurance, Quest and Snohvit. BP, Equinor, Shell will provide very strong in-kind contribution to PINCH by providing required data from the aforementioned fields and technical advise. To guarantee the impact of PINCH project, WP5 has been envisaged which covers impact generation, knowledge exchange between academia and industry, and training of junior staff.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X004953/1
    Funder Contribution: 319,250 GBP

    The need for the UK to shift to NetZero was highlighted at COP26 in Glasgow, and there is a clear need for UK energy security. UK policy to achieving these is based on massive expansion of off-shore wind. In 2022 Crown Estate Scotland "ScotWind" auctioned 9,000 km2 of sea space in the northern North Sea, with potential to provide almost 25 GW of offshore wind. Further developments are planned elsewhere, for example, the 300 MW Gwynt Glas Offshore Wind Farm in the Celtic Sea. These developments mark a shift in off-shore wind generation, away from shallow, well mixed coastal waters to deeper, seasonally stratified shelf seas This shift offers both challenges and opportunities which this proposal will explore. Large areas of the NW European shelf undergo seasonal thermal stratification. This annual development of a thermocline, separating warm surface water from cold deep water, is fundamental to biological productivity. Spring stratification drives a bloom of growth of the microscopic phytoplankton that are the base of marine food chains. During summer the surface layer is denuded of nutrients and primary production continues in a layer inside the thermocline, where weak turbulent mixing supplies nutrients from the deeper water and mixes oxygen and organic material downward. Tidal flows generate turbulence; the strength of turbulence controls the timing of the spring bloom, mixing at the thermocline, and the timing of remixing of the water in autumn/winter. Determining the interplay between mixing and stratification is fundamental to understanding how shelf sea biological production is supported. Arrays of large, floating wind turbines are now being deployed over large areas of seasonally-stratifying seas. These structures will inject extra turbulence into the water, as tidal flows move through and past them. This extra turbulence will alter the balance between mixing and stratification: spring stratification and the bloom could occur later, biological growth inside the thermocline could be increased, and more oxygen could be supplied into the deep water. There could be significant benefits of this extra mixing, but we need to understand the whole suite of effects caused by this mixing to aid large-scale roll-out of deep-water renewable energy. eSWEETS will conduct observations at an existing floating wind farm in the NW North Sea to determine how the extra mixing generated by tides passing through the farm affect the physics, biology and chemistry of the water. We will measure the mixing of nutrients, organic material and oxygen within the farm, and track the down-stream impacts of the mixing as the water moves away from the wind farm and the phytoplankton respond to the new supply of nutrients. We will use autonomous gliders to observe the up-stream and down-stream contrasts in stratification and biology all the way through the stratified part of the year. We will use our observations to formulate the extra mixing in a computer model of the NW European shelf, so that we can then use the model to predict how planned renewable energy developments over the next decades might affect our shelf seas and how those effects might help counter some of the changes we expect in a warming climate. Stratification is so fundamental to how our seas support biological production that we will develop a new, cost-effective way of monitoring it. We will work with the renewables industry and modellers at the UK Met Office on a technique that allows temperature measurements to be made along the power cables that lie on the seabed between wind farms and the coast. Our vision is that large-scale roll-out of windfarms will lead to the ability to measure stratification across the entire shelf. This monitoring will help the industry (knowledge of operating conditions), government regulators (environment responses to climate change) and to operational scientists at the UK Met Office (constraining models for better predictions).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W005212/1
    Funder Contribution: 1,783,050 GBP

    The Ocean-REFuel project brings together a multidisciplinary, world-leading team of researchers to consider at a fundamental level a whole-energy system to maximise ocean renewable energy (Offshore wind and Marine Renewable Energy) potential for conversion to zero carbon fuels. The project has transformative ambition addressing a number of big questions concerning our Energy future: How to maximise ocean energy potential in a safe, affordable, sustainable and environmentally sensitive manner? How to alleviate the intermittency of the ocean renewable energy resource? How ocean renewable energy can support renewable heat, industrial and transport demands through vectors other than electricity? How ocean renewable energy can support local, national and international whole energy systems? Ocean-REFuel is a large project integrating upstream, transportation and storage to end use cases which will over an extended period of time address these questions in an innovative manner developing an understanding of the multiple criteria involved and their interactions.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V027050/1
    Funder Contribution: 19,903,400 GBP

    The decarbonisation of industrial clusters is of critical importance to the UK's ambitions of cutting greenhouse gas emissions to net zero by 2050. The UK Industrial Decarbonisation Challenge (IDC) of the Industrial Strategy Challenge Fund (ISCF) aims to establish the world's first net-zero carbon industrial cluster by 2040 and at least one low-carbon cluster by 2030. The Industrial Decarbonisation Research and Innovation Centre (IDRIC) has been formed to support this Challenge through funding a multidisciplinary research and innovation centre, which currently does not exist at the scale, to accelerate decarbonisation of industrial clusters. IDRIC works with academia, industry, government and other stakeholders to deliver the multidisciplinary research and innovation agenda needed to decarbonise the UK's industrial clusters. IDRIC's research and innovation programme is delivered through a range of activities that enable industry-led, multidisciplinary research in cross-cutting areas of technology, policy, economics and regulation. IDRIC connects and empowers the UK industrial decarbonisation community to deliver an impactful innovation hub for industrial decarbonisation. The establishment of IDRIC as the "one stop shop" for research and innovation, as well as knowledge exchange, regulation, policy and key skills will be beneficial across the industry sectors and clusters. In summary, IDRIC will connect stakeholders, inspire and deliver innovation and maximise impact to help the UK industrial clusters to grow our existing energy intensive industrial sectors, and to attract new, advanced manufacturing industries of the future.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.