Powered by OpenAIRE graph
Found an issue? Give us feedback

UK Water Industry Research Ltd

UK Water Industry Research Ltd

18 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/G029946/1
    Funder Contribution: 904,117 GBP

    In the developed world most people are able to take the supply of safe clean drinking water for granted, most of the time. However water quality failures do occur and there are associated health risks. The analysis of water samples, taken at the customers tap by the UK Water Industry to meet regulatory requirements, has shown that for three consecutive years approximately 1 in every 200 samples failed to meet the standards for coliforms, an indicator of faecal contamination. The few epidemiologic studies in the area confirm that there is a problem and that it is related to the pipe infrastructure. This pipe infrastructure, used to deliver this basic human resource, is an extremely complicated mix of materials, pipe sizes and structures and appurtenances that are connected in a network, usually in loops, developed in a piecemeal manner over considerable time. This infrastructure is integral to our towns and cities and widespread replacement is unfeasible due to the associated costs and disruption. Whi1e there is existing knowledge and tools for understanding and making some predictions of the structural performance of these assets, the knowledge and applicable understanding of their water quality related performance is extremely poor.This system of buried infrastructure acts as a dynamic physical, microbiological and chemical reactor, with high surface area and with highly variable residence times. As a consequence there are a number of major and interacting physical and bio-chemical processes that degrade the quality of drinking water as it is transported. The situation is further complicated by the unknown, but deteriorating, internal condition of the infrastructure. This Challenging Engineering vision will enable the applicant to establish a world leading multidisciplinary team to derive new knowledge of the physical bio-chemical reactions and interactions occurring within water distribution systems, dominated by the aging infrastructure. The team will integrate across engineering and microbiological, chemical and computer science. Extensive use will be made of the latest instrumentation and measurement techniques from the different disciplines, applied to experimental studies on the internationally unique, 600m long temperature controlled pipe test loop facility at the University of Sheffield and ambitious live field trials with UK water companies (both areas of particular expertise of the applicant). The new understanding and knowledge gained will be applied to develop a suite of analysis and predictive tools to drive a paradigm shift in the way in which water distribution systems are operated, managed, rehabilitated and maintained for water quality with a move towards proactive management operating in near real time.The project is extremely ambitious, but presents the opportunity for the UK to establish an area of international expertise and to lead the world in an expanding research area of public interest and significance. The most apparent output will be superior water quality at least cost, consistent with the demands of an increasingly well informed society, leading to enhanced public health and well being. In the longer term, the multidisciplinary team will evolve by seeking to further develop the multidisciplinary approach for the even more complex environments of the complete urban water cycle and seek to stimulate further change for integrated, holistic and sustainable management across the cycle.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E025579/1
    Funder Contribution: 7,129 GBP

    The aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E021603/1
    Funder Contribution: 512,891 GBP

    The aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E021956/1
    Funder Contribution: 111,907 GBP

    The aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G061076/1
    Funder Contribution: 257,252 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.