Powered by OpenAIRE graph
Found an issue? Give us feedback

C9-T Immunity

Do T cells link loss and gain-of-function mechanism in C9orf72 ALS/FTD?
Funder: European CommissionProject code: 101117710 Call for proposal: ERC-2023-STG
Funded under: HE | ERC | HORIZON-ERC Overall Budget: 1,498,610 EURFunder Contribution: 1,498,610 EUR

C9-T Immunity

Description

Neurodegenerative diseases are the top 3 leading causes of death and are viewed now as systemic diseases. Adaptive immunity including a T-cell response in the central nervous system (CNS) likely contributes to disease pathogenesis. How T cells are primed and recruited to CNS is largely unexplored, due to the complexity of the process and lack of tools and animal models. I will study these questions on the most common genetic form of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, a GGGGCC repeat expansion in the C9orf72 gene causes haploinsufficiency through reduced C9orf72 protein expression, and gain-of-function toxicities through repeat RNA and its translation to aggregating dipeptide repeats (DPRs). A synergistic role of these pathomechanisms is suspected but not clearly identified. I propose that T cells are the missing piece of the puzzle for the synergistic effects of C9orf72 haploinsufficiency and DRP toxicity and will explore a) whether peripheral antigen-presenting cells (APCs) and CNS microglia present DPRs to prime antigen-specific T-cell response; b) whether C9orf72 haploinsufficiency alters antigen presentation of microglia and APCs; c) whether T cells mediate synergic effects of C9orf72 haploinsufficiency and DRP toxicity. This novel project for the first time addresses peripheral and CNS activation of T cells against DPRs in C9orf72 ALS/FTD and reveals novel mechanism on synergistic effect of C9orf72 haploinsufficiency and DPR toxicity. It offers a unique integration of neurobiological tools, immunological methods, and single-cell-level approaches. It brings solid evidence on the antigen presentation of endogenous aggregating protein to drive antigen-specific T-cell response, which will broad the understanding on ALS/FTD and other neurodegenerative diseases. It presents a promising research trajectory for the identification of new biomarkers, breakthrough therapeutic targets and the development of novel interventions.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::7f5a8743fb85eeccb0af9ab28defe983&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down