Powered by OpenAIRE graph
Found an issue? Give us feedback

Blue Nodules

Breakthrough Solutions for the Sustainable Harvesting and Processing of Deep Sea Polymetallic Nodules
Funder: European CommissionProject code: 688975 Call for proposal: H2020-SC5-2015-one-stage
Funded under: H2020 | RIA Overall Budget: 7,991,140 EURFunder Contribution: 7,991,140 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
8

Blue Nodules

Description

A key EU policy aims to reduce the Union dependency on raw materials imports, in particular (candidate) Critical Raw Materials that are vital for the EU innovative technologies. Topic SC5-11c-2015 scope focuses on “developing new highly-automated technological sustainable solutions for deep mining … in the sea bed combined with in-situ processing of minerals”. An existing but challenging raw material resource concerns polymetallic nodules. These round to elongated concretions of 1–15 cm diameter form on sediment-covered deep-sea plains in all oceans between 4-6000m water depth. The challenge to harvest and transport the nodules to the EU shore is taken on by Blue Nodules. The governing project principle is: industrial viability within the context of a realistic and technical, economic and environmentally balanced business case for the complete Polymetallic Nodules value chain of mining, processing and valorisation. Blue Nodules will develop and test to TRL6 maturity a new highly-automated and technologically sustainable deep sea mining system. Key features are: an annual production capability of 2 Million Tons nodules in water depths up to 6000m, in-situ processing of the nodules and intrinsic safe working conditions. Technical WPs are dedicated to subsea harvesting equipment & control technology, in-situ seafloor processing of polymetallic nodules and sea surface, land operations & processes. A dedicated WP focuses on environmental issues and on an Environmental Impact Assessment (EIA). A WP setting requirements and assessing the developed technology controls the entire work plan structure. High credibility is obtained by linking the project work to a nodule field licence owned by a project partner and located in the most promising known nodule deposit: the Clarion Clipperton Zone. The project consortium contains 14 leading industry and research partners from 9 EU member states. The project duration is 48 months, the required funding amounts to 8 Million.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 8
  • 13
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::16eba79a6b47cd3cfd3cd50c86e7dc91&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down