Powered by OpenAIRE graph
Found an issue? Give us feedback

CWASI

Coping with water scarcity in a globalized world
Funder: European CommissionProject code: 647473 Call for proposal: ERC-2014-CoG
Funded under: H2020 | ERC | ERC-COG Overall Budget: 1,222,500 EURFunder Contribution: 1,222,500 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
396
306
Description

We intend to set up a new globalized perspective to tackle water and food security in the 21st century. This issue is intrinsically global as the international trade of massive amounts of food makes societies less reliant on locally available water, and entails large-scale transfers of virtual water (defined as the water needed to produce a given amount of a food commodity). The network of virtual water trade connects a large portion of the global population, with 2800 km3 of virtual water moved around the globe in a year. We provide here definitive indications on the effects of the globalization of (virtual) water on the vulnerability to a water crisis of the global water system. More specifically, we formulate the following research hypotheses: 1) The globalization of (virtual) water resources is a short-term solution to malnourishment, famine, and conflicts, but it also has relevant negative implications for human societies. 2) The virtual water dynamics provide the suitable framework in order to quantitatively relate water-crises occurrence to environmental and socio-economic factors. 3) The risk of catastrophic, global-scale, water crises will increase in the next decades. To test these hypotheses, we will capitalize on the tremendous amount of information embedded in nearly 50 years of available food and virtual water trade data. We will adopt an innovative research approach based on the use of: advanced statistical tools for data verification and uncertainty modeling; methods borrowed from the complex network theory, aimed at analyzing the propagation of failures through the network; multivariate nonlinear analyses, to reproduce the dependence of virtual water on time and on external drivers; multi-state stochastic modeling, to study the effect on the global water system of random fluctuations of the external drivers; and scenario analysis, to predict the future probability of occurrence of water crises.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 396
    download downloads 306
  • 396
    views
    306
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::602619d3a1bbaa19242235124bba904b&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down