Powered by OpenAIRE graph
Found an issue? Give us feedback

BE-OI

Beyond EPICA - Oldest Ice
Funder: European CommissionProject code: 730258 Call for proposal: H2020-SC5-2016-OneStageB
Funded under: H2020 | CSA Overall Budget: 2,594,000 EURFunder Contribution: 2,223,000 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
17
24
Description

To better constrain the response of Earth’s climate system to continuing emissions, it is essential to turn to the past. A key advance would be to understand the transition in Earth’s climate response to changes in orbital forcing during the 'mid-Pleistocene transition' (900 to 1200 thousand years ago) and in particular the role of greenhouse gases. Unravelling such key linkages between the carbon cycle, ice sheets, atmosphere and ocean behaviour is vital for society to better design effective mitigation and adaptation strategies. Only ice cores contain the unique and quantitative information about past climate forcing and atmospheric responses. But the ice providing essential evidence about past mechanisms of climate change more than 1 Ma ago required for our understanding of these changes (termed the “Oldest Ice” core), has not been found to date. The consortium BEYOND EPICA – OLDEST ICE (BE-OI), formed by 14 European institutions, takes on this challenge to prepare the ground for obtaining 1.5 million year old ice from East Antarctica. BE-OI has the objectives to: - support the site selection through creation and synthesis of all necessary information on Antarctic sites through specific geophysical surveys and the use of fast drilling tools to qualify sites and validate the age of their ice; - select and evaluate the optimum drill site for the future “Oldest Ice” core project and establish a science and management plan for a future drilling; - coordinate the technical and scientific planning to ensure the availability of the technical means to implement suitable drill systems and analytical methodologies for a future ice-core drilling, and of well-trained personnel to operate them successfully; - establish the budget and the financial background for a future deep-drilling campaign; - embed the scientific aims of an “Oldest Ice” core project within the wider paleoclimate data and modelling communities through international and cross-disciplinary cooperation.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 24
  • 17
    views
    24
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::88d5a678bd73e7173ac78ed894c130ed&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down