Powered by OpenAIRE graph
Found an issue? Give us feedback

PolyPath

Insights from within-host dynamics on the coexistence of antibiotic resistant and sensitive pathogens
Funder: European CommissionProject code: 844369 Call for proposal: H2020-MSCA-IF-2018
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 184,708 EURFunder Contribution: 184,708 EUR
visibility
views
OpenAIRE UsageCountsViews provided by UsageCounts
5
Description

Understanding and controlling the evolution of antibiotic resistant strains is one of the biggest public health challenges of our time. Despite a vast amount of data gathered and models being developed, coexistence of antibiotic resistant and sensitive genotypes within the same bacterial pathogen is still an unresolved problem. Simple epidemiological models predict the dominance of either of the two strains while more complex models suffer from generality. Using empirical evidence, I set out to resolve this problem by coupling within-host pathogen dynamics and between-host transmission of bacteria. First, stochastically modelling the within-host system I will develop predictions for the rate of resistance emergence and abundance of sensitive and resistant individuals in hosts with or without antibiotic treatment. While resistant bacteria thrive under antibiotic treatment, the sensitive strain has an advantage in invading and colonising untreated hosts. The outcomes help to get a more detailed understanding of the within-host dynamics, e.g. identification of optimal treatment strategies to confine the evolution of antibiotic resistance. Feeding these results into the dynamics on the population level, the between-host level, will result in a within-between-host feedback. Fitting and confronting the model to empirical data on prevalence and resistance emergence in Streptococcus pneuomoniae and Escherichia coli will conclude this project. The mechanistic implementation of the dynamics can immediately be linked to data which is of great importance given the increasing amount of empirical studies in the field of epidemiology. Through the theoretical and applied results, the study will add new insights and predictions in the field of infectious disease evolution and be able to identify factors enabling the stable coexistence of antibiotic resistant and sensitive bacteria.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8c3304f70072793bbfacd2917d90157e&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down