Loading
In order to achieve the next generation potential nanomedicine has to offer, next generation nanomaterials must be developed. Inorganic/organic nanocomposite particles are composed of polymeric, organic nanoscale structures (50-200 nm) in which smaller metallic nanoparticles (2-20 nm) are encapsulated. Both the organic and inorganic components can be varied, giving rise to a platform technology with great composition potential. The use of inorganic/organic nanocomposites is in its infancy, but they offer a range of potential healthcare applications, from enhancement of radiotherapy for cancer treatment to providing more sensitive, specific and quantitative diagnostic analysis than current established techniques, with real-time monitoring and quantification in biological systems potential. Such materials may aid cardiovascular imaging, oncology and cell tracking but extension to infectious disease diagnostics and advanced radiotherapy would be world-leading. Inorganic/organic nanocomposite particles will offer new direction for nanomedicine research, providing the foundation for new research fields to emerge through the creation of a novel platform technology. Investigation into nanocomposites will open significant avenues for research innovation in terms of both nanocomposite material development and device development. Uniquely, the highly novel platform could be further adopted to incorporate responsive functionality, amplified disease targeting as well as the incorporation of multiple component types, thus creating multifunctional composite materials for combinational diagnostics and therapy. The platform technology, therefore, is highly adaptable allowing for a range of applications in both diagnostic and therapeutic areas, each with significant avenues to innovative material design and device development. The specific aim of this fellowship is to enable the creation of world-leading expertise within the UK, able to pioneer new science and establish impact from its application towards real-world healthcare needs. Next generation nanomaterials will give rise to new technologies which would offer considerable benefits for healthcare diagnosis and for treatment. The nanomaterial development strategy is truly multidisciplinary and thus, through this fellowship, multidisciplinary team development will be established to provide collaborative approaches aimed at the translation of research findings to clinical use. Through this strategy, novel areas of healthcare research will be established in the UK with truly global importance. In the long-term, the impact of establishing a platform technology will provide a springboard from which the applicant will develop commercial and policy influence, enabling him to become a significant global leader of innovative multidisciplinary research. The fellowship applicant, Dr Marco Giardiello, has experience of inorganic and organic nanomedicine research in both diagnostic and therapeutic areas, having established several research collaborations in both academia and industry. He has been a key lead in the identification and manufacturing processes towards clinical trial development of nanomedicines, as well as being integral in developing platform technologies through to commercial outputs having co-founded a start-up company. The research is to be carried out at the University of Liverpool's Department of Chemistry with critical cross-faculty, cross-sector and multi-disciplinary collaboration. The fellowship proposal's key aims are: 1. Novel inorganic/organic nanocomposite particle development 2. Multidisciplinary research team building 3. Novel nanomedicine applications creating new IP and industrial regulatory engagement 4. The application of new technologies towards multiple global healthcare needs
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7352f572efa57184dcc59aa738f5e1db&type=result"></script>');
-->
</script>