
Loading
Terahertz (THz) device research and studies of THz phenomena in solid state systems require detection of THz waves and signals on the scale of few microns. These measurements present a major technological problem caused by diffraction of THz waves. The diffraction limit prevents the use of the recently developed THz spectroscopic instrumentation for studies of objects smaller than approximately a wavelength. Near-field surface probing methods have shown potential solutions in overcoming the diffraction limit. However all the existing THz near-field techniques exhibit another fundamental limitation due to significant perturbations in the electric field caused by the near-field probe. The probe invasiveness and a non-uniform frequency response across the THz spectrum prevent the use of the existing near-field probes for mapping of electric field distribution in THz devices. In addition, THz near-field imaging systems with spatial resolution better than ~1/20 of a wavelength suffer from a severe reduction in sensitivity.To mitigate these problems and to allow high spatial resolution studies with THz waves we propose to develop a THz imaging and spectroscopy system with a novel near-field probe. The probe concept exploits the non-invasive nature of the electro-optic detection method and utilizes an optical micro-resonator to enhance the detection sensitivity. The proposed electro-optic micro-resonator will be integrated into a fibre-coupled near-field probe. It will allow THz wave and signal probing with a spatial resolution of ~5 microns (~1/100 of the wavelength) and it will offer full spectroscopic capabilities in the THz range (0.1-2.0 THz). The novelty of this approach is in exploiting the optical cavity resonance for electro-optic detection of THz waves by an extremely small near-field probe. The goal of this research programme is to develop and build the THz near-field probing system and apply it in device research on the sub-wavelength scale. The proposed technology will expand the spectrum of THz studies to micrometre-scale objects. It will aid in the progress of THz device research and will facilitate studies of THz phenomena in physics, materials science and other disciplines.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::992a1635102cfa7c845b33028606bcf5&type=result"></script>');
-->
</script>