Powered by OpenAIRE graph
Found an issue? Give us feedback

UKRI Centre for Doctoral Training in Application of Artificial Intelligence to the study of Environmental Risks (AI4ER)

Funder: UK Research and InnovationProject code: EP/S022961/1
Funded under: EPSRC Funder Contribution: 6,730,780 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
505
569

UKRI Centre for Doctoral Training in Application of Artificial Intelligence to the study of Environmental Risks (AI4ER)

Description

The UKRI Centre for Doctoral Training in "Application of Artificial Intelligence to the study of Environmental Risks" will develop a new generation of innovation leaders to tackle the challenges faced by societies across the globe living in the face of environmental risk, by developing new methods that exploit the potential of Artificial Intelligence (AI) approaches to the proper analysis of complex and diverse environmental data. It is made of multiple departments within Cambridge University, alongside the British Antarctic Survey and a wide range of partners in industry and policy. AI offers huge potential to transform our ability to understand, monitor and predict environmental risks, providing direct societal benefit as well as potential commercial opportunities. Delivering the UN 2030 Sustainable Development Agenda and COP 21 Paris Agreement present enormous and urgent challenges. Population and economic growth drive increased demands on a planet with finite resources; the planet's biodiversity is suffering increasing pressures. Simultaneously, humanity's vulnerabilities to geohazards are increasing, due to fragilities inherent in urbanisation in the face of risks such as floods, earthquake, and volcanic eruptions. Reliance on sophisticated technical infrastructures is a further exposure. Understanding, monitoring and predicting environmental risks is crucial to addressing these challenges. The CDT will provide the global knowledge leadership needed, by building partnership with leaders in industry, commerce, policy and academia in visionary, creative and cross-disciplinary teaching and research. Vast and growing datasets are now available that document our changing environment and associated risks. The application of AI techniques to these datasets has the potential to revolutionise our ability to build resilience to environmental hazards and manage environmental change. Harnessing the power of AI in this regard will support two of the four Grand Challenges identified in the UK's Industrial Strategy, namely, to put the UK at the forefront of the AI and data revolution and to maximise the advantages for UK industry from the global shift to clean growth. The students in the CDT will be trained in a broad range of aspects of the application of AI to environmental risk in a multi- disciplinary and enthusing research setting, to become world-leaders in the arena. They will undertake media training activities, public engagement, and training in the delivery of policy advice as well as the development of entrepreneurial skills and an understanding of the approach of business to sustainability. Discussion of the broader societal, legal and ethical dimensions will be integral to this training. In this way the CDT will seed a new domain of AI application in the UK that will become a champion for the subject globally.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 505
    download downloads 569
  • 505
    views
    569
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ef155b1396c2d884156504e9bdcac93f&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down